A liquid membrane process of Alkaloids extraction from Datura Innoxia solution was studied applying pertraction process in rotating discs contactor (RDC). Decane as a liquid membrane and dilute sulphuric acid as stripping solution were used. The effect of the fundamental parameters influencing the transport process, e.g. type of solvent used, effect of disks speed, amount of liquid membrane and effect of pH for feed and strip solution. The transport of alkaloids was analysed on the basis of kinetic laws of two consecutive irreversible first order reactions. Thus, the kinetic parameters (k1, k1, , tmax, and ) for the transport of alkaloids were determined. The effect of organic membrane type on percentage of Alkaloids transport was found to be in the order (n-decane> n-heptane> n-hexane> ethyl ether). The results showed that the highest alkaloids extraction was obtained when using two stages, (10 rpm) discs speed, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Observation showed that the membrane entrance rate constant k1 and percentage of alkaloids transported in strip phase increased with increasing numbers of stages but the exit rate constant k2 decreased. The alkaloids extraction ratio increased with increasing the disks speed from 5 to 10 rpm but decreased at 15 rpm and decreased when increasing the volume of membrane. Also pH of feed and strip solution affected the extraction ratio and rate constants.
The nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThis study aimed to obtain an isolate of a mold that has well characteristic for production of citric acid from raw materials available locally by solid-state fermentation and determination of the optimum conditions for production .Fourteen mold isolates producing acid were obtained from different sources, involved decayed fruits and soils. These isolates were subjected to initial qualitative screening followed by secondary quantitative screening In secondary screening a method combined between the submerged fermentation and solid-state fermentation was followed using a piece of sponge saturated by nutrients required for growth and production of acid. It was found that the isolate of A7 was the highest producer for citric acid tha
... Show MoreThe presence of heavy metal in environment associated with several health problems. The clean up environment from lead (Pb) and Nickel (Ni) represent major challenges. In his study, planktonic and immobilized bacteria were used to purify the water from Pb and Ni in Lab. In the present study, three bacterial isolates of Staphylococcus aureus (isolated from wound swaps), Pseudomonas aeruginosa (isolated from wound swaps) and Pantoea (isolated from urine samples) and identified using biochemical methods to check their ability to biosorb Pb and Ni. Ten PPM of Pb and Ni were added to the deionized distilled water and 107 c.f.u. of planktonic bacteria were used to biosorpe Pb and Ni. Similar experiment was repeated but
... Show MoreThe removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant re
... Show MoreSome microorganisms, including fungi, are characterized by their removal efficiency and reducing the concentrations of heavy metals such as Pb and Cr from industrial water. The present study aims to estimate the efficiency of Penicillium digitatum (Pers.) Sacc. as a low-cost biosorbent in reducing Pb and Cr from industrial water with optimum biosorption conditions (acidity of 1.5 , 4, and 5; temperature of 30 °C). The Fourier transform infrared spectroscopy (FTIR) analysis was also used for determining the roles of the functional groups in this biosorbent. The results indicated that the highest P. digitatum efficiency values for reducing the levels of Pb and Cr were 84% and 70% , respectively, at pH of 5 after 24 h.
... Show MoreThe degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreA total of 96 stool samples were collected from children with bloody diarrhea from two hospitals in Baghdad. All samples were surveyed and examined for the presence of the Escherichia coli O157:H7 and differentiate it from other Non -Sorbitol Fermenting Escherichia coli (NSF E. coli). The Bacterial isolates were identifed by using morphological diagnostic methods, Samples were cultured on liquid enrichment medium, incubated at 37C? for 24 hrs, and then cultured on Cefixime Tellurite -Sorbitol MacConkey Agar (CT- SMAC). 32 non-sorbitol fermenting bacterial isolates were obtained of which 11 were identified as Escherichia coli by using traditional biochemical tests and API20E diagnostic system without differentiation between
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show More