Performance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic Algorithm (GA) has been found better than deterministic search for study mutation of process variables of the non-linear bed. Spouted bed behaved as hybrid system. Global GA could provide confirmed data and selected best operating conditions. Optimization technique would guide the experimental work and reduce the risk and cost of operation. Optimum results could improve operating of the bed at high-performance and stable conditions. Maximum uniformity has been found at high-density, small size of solid beads and low gas velocity. Density of solids has been effective variable on UI.Velocity of gas and diameter of solid particles has been observed more sensitive decision variables with UI mutations. Uniformity of solid particles would enhance hydrodynamic parameters, heat and mass transfer in the bed because of improving of hold-up and voids distributions of solids. The results of the optimization have been compared with the experimental data using sophisticated optical probe and Computed Tomography technique.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreAbstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
In This paper, sky radio emission background level associated with radio storm burst for the Sun and Jupiter is determined at frequency (20.1 MHz). The observation data for radio Jove telescope for the Sun and Jupiter radio storm observations data are loaded from NASA radio Jove telescope website, the data of Sunspot number are loaded from National Geophysical Data Center, (NGDC). Two radio Jove stations [(Sula, MT), (Lamy, NM)] are chose from data website for these huge observations data. For the Sun, twelve figures are used to determine the relation between radio background emission, and the daily Sunspot number. For Jupiter a twenty four figures are used to determine the relation between radio background emission and diffraction betwe
... Show MoreThe manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreWireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Mode filtering technique is one of the most desired techniques in optical fiber communication systems, especially for multiple input multiple output (MIMO) coherent optical communications that have mode-dependent losses in communication channels. In this work, a special type of optical fiber sensing head was used, where it utilizes DCF13 that is made by Thorlabs and has two numerical apertures (NA’s). One is for core and 1st cladding region, while the 2nd relates the 1st cladding to the 2nd cladding. Etching process using 40 % hydro-fluoric (HF) acid was performed on the DCF13 with variable time in minutes. Investigation of the correlation between the degree of etching and the re