In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD), N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF) and atomic force microscopy (AFM). Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.
Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars
... Show MoreThe distress of moisture induced damage in flexible pavement received tremendous attention over the past decades. The harmful effects of this distress expand the deterioration of other known distresses such as rutting and fatigue cracking. This paper focused on the efficiency of using the waste material of demolished concrete to prepare asphalt mixtures that can withstand the effect of moisture in the pavement. For this purpose, different percentages of waste demolished concrete (0, 10, 20, 30, 50, 70 and 100) were embedded as a replacement for coarse aggregate to construct the base course. The optimum asphalt contents were determined depending on the Marshall method. Then after, two parameters were founded to evaluate the moisture
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreIntroduction The Hybrid Gamma Camera (HGC) is being developed to enhance the localisation of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. Purpose To assess the capability of the HGC, a lymph-node-contrast (LNC) phantom was constructed for an evaluative study simulating medical scenarios of varying radioactivity concentration and SLN size. Materials and methods The phantom was constructed using two methyl methacrylate PMMA plates (8 mm thick). The SLNs were simulated by drilling circular wells of diameters ranging between 10 mm and 2.5 mm (16 wells in total) in one plate. These simulated SLNs were placed underneath scattering material with thicknesses ranging between 5 mm
... Show More