Preferred Language
Articles
/
ijp-225
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for
thickness 350nm and 400nm respectively, The dislocation density,
microstrain and number of crystallites per unit surface area,
decreases with increasing of thickness, while they increases with
gamma radiation. From the atomic force microscope (AFM), the
grain size of CdO films decrease from 96.69nm before radiation to
89.49 nm after gamma radiation and RMS roughness increases for
the irradiated sample from 4.26nm to 4.8nm, increase in the surface
roughness is advantages as it increases the efficiency of the CdO
solar cells. The optical properties for thin CdOfilms with different
thickness before and after gamma irradiation have been determined
and reveals direct energy gap. It is decrease with the increase of
thickness, while it is increase after gamma irradiation. These films a
promising candidate for the window layer in solar cells and other
possible optoelectronic application.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 04 2016
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4

... Show More
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Effect of Fe-Doping on the Properties of CdO Thin Films Prepared by Pulsed Laser Deposition
...Show More Authors

     Pure and iron-doped cadmium oxide ((CdO)1-xFex) thin films at different ratios were prepared using  pulsed laser deposition technique. The X-ray diffraction showed a polycrystalline structure for all samples associated with cubic CdO structure. Another phase appeared at the highest ratio corresponding to the cubic Fe phase. Crystallinity was enhanced and crystalline size increased with increasing Fe ratio. AFM measurements showed that increase of  Fe ratio led to an increase in the average particle diameter. In addition, the distribution of particle size became wide and of irregular behaviour, as well as increasing of the average roughness and the root-mean-square roughness. Increasing the Fe ratio caused

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Structural and photoluminescence properties of CdO doped TiO2 thin films prepared by pulsed laser deposition
...Show More Authors

TiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of thickness on the optical properties of ZnO thin films prepared by pulsed laser deposition technique (PLD)
...Show More Authors

Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of CdO and CdO0.99Cu0.01 thin films prepared by pulsed laser deposition technique
...Show More Authors

Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of annealing on superconducting properties of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 thin films by pulsed laser deposition
...Show More Authors

Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.

View Publication Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study the effect of thermal annealing on some physical properties of thin Cu2SiO3 films prepared by pulsed laser deposition
...Show More Authors

The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of BaTiO3 thin films prepared by pulsed laser deposition
...Show More Authors

BaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Electrical properties of pure NiO and NiO:Au thin films prepared by using pulsed laser deposition
...Show More Authors

The electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 09 2022
Journal Name
Journal Of Ovonic Research
The effects of CuO doping on structural, electrical and optical properties of CdO thin films deposited by pulsed laser deposition technique
...Show More Authors

Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref