History matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir model integrates a variety of inputs, including well position and trajectory, well completion data, initial reservoir condition, and daily production/injection rates. The validation process involves comparing the original oil reserve derived from the geological model with the one obtained from the dynamic reservoir model. To achieve an accurate history matching, the calibration process has been performed by aligning observed data with simulation results. This involves focusing on production/injection data for each well and pressure measurements for selected wells. Notably, horizontal permeability is identified as a critical parameter in this study, which is adjusted iteratively to achieve a robust match for individual wells and the entire field. Thus, Successful calibration facilitates the subsequent stage and future scenarios allowing for the exploration of different conditions to predict the performance of the Garraf oilfield. This comprehensive approach improves the reliability of reservoir predictions, facilitating well-informed decision-making in reservoir management.
Efficacy of Oregano Essential Oil Mouthwash in Reducing Oral Halitosis: A Randomized, Double-Blind Clinical Trial, Mohamed Saeed M Ali, Ayser Najah Mohammed*
The sediments of the Hartha Formation were deposited during the Upper Campanian- Maastrichtian cycle. Due to the importance of this sequence in terms of stratification and economics in the oil industry, it has been focused on in this study. The present study includes three oil fields in central of Iraq within the Mesopotaminan Zone, East Baghdad, Balad and Kifl oil fields. This study was accomplished by describing 190 thin sections and interpreting the response of the available well logging data. Seven major microfacies were diagnosed in the Hartha succession at studied oil fields, they are; Orbitoidal wackestone - packstone, Orbitoidal and miliolids wackestone, Rotaliidae and Siderolites with echinodermata wackestone - packstone,
... Show MoreA factorial experiment was applied with four replicates on rosemary plants (Rosmarinus officinalis L.) grown in pots inside the glasshouse of the Department of Biology, College of Science, Salahaddin University, Erbil, Iraq, during April, 2019 to July, 2020, to determine the effects of soil moisture content ( SM1: 100% and SM2: 60% field capacity), nitrogen fertilizer (N1: 100, N2: 200 and N3: 300kg/hectare), and magnesium fertilizer (Mg1: 0.0, Mg2: 30 and Mg3: 60kg/hectare) and their interactions on some growth characteristics and essential oil content of rosemary plants. Two cuttings were taken from rosemary shoots (on March, 2020 and July, 2020) after 12 and 15 months of planting respectively. Results showed that cutting 1:
... Show MoreAn accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show MoreObject tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreIntroduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show More
