History matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir model integrates a variety of inputs, including well position and trajectory, well completion data, initial reservoir condition, and daily production/injection rates. The validation process involves comparing the original oil reserve derived from the geological model with the one obtained from the dynamic reservoir model. To achieve an accurate history matching, the calibration process has been performed by aligning observed data with simulation results. This involves focusing on production/injection data for each well and pressure measurements for selected wells. Notably, horizontal permeability is identified as a critical parameter in this study, which is adjusted iteratively to achieve a robust match for individual wells and the entire field. Thus, Successful calibration facilitates the subsequent stage and future scenarios allowing for the exploration of different conditions to predict the performance of the Garraf oilfield. This comprehensive approach improves the reliability of reservoir predictions, facilitating well-informed decision-making in reservoir management.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
The Iraqi outfit is characterized by special features and identity that are closely related to the traditions, customs, religious and social beliefs and other references of the Iraqi environment and its factors affecting the individual and society. Every place in Iraq has its own uniform, which differs in terms of its artistic, aesthetic and functional components from place to place.
The abaya, especially worn by women, is especially distinct in terms of the design of the uniform, the nature of the cloth made of it, as well as the color of the abaya, which is dominated by black in most designs. The Dar Al-Taros Center and Textile Research initiated the construction of theoretical and practical bases in the design of contemporary
... Show MoreIn unpredicted industrial environment, being able to adapt quickly and effectively to the changing is key in gaining a competitive advantage in the global market. Agile manufacturing evolves new ways of running factories to react quickly and effectively to changing markets, driven by customized requirement. Agility in manufacturing can be successfully achieved via integration of information system, people, technologies, and business processes. This article presents the conceptual model of agility in three dimensions named: driving factor, enabling technologies and evaluation of agility in manufacturing system. The conceptual model was developed based on a review of the literature. Then, the paper demonstrates the agility
... Show MoreA digital elevation model (DEM) is a digital representation of ground surface topography or terrain. It can be represented as a raster (a grid of squares) and it is commonly estimated by utilizing remote sensing techniques, or from land surveying. In this research a 3D building of Baghdad university campus have been performed using DEM, where the easting, northing, and elevation of 400 locations have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from QuickBird satellite sensor (with spatial resolution of 0.6 m). This image has been geo-referenced by selecting ground control points of the GPS. The rectification is running, using 1st order polynomial transformation.
... Show MoreThis paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB ) to find the optimal solution
The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.