The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstrates the methods’ ability to detect the location and severity of an aortic aneurysm through the analysis of flow waveforms in clinically accessible locations. Therefore, the proposed methodology shows a high potential for non-invasive aneurysm detectors/monitors.
The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreInterleukin-6 (IL-6) is a proinflammatory cytokine implicated in the immunopathogenesis of tuberculosis (TB). TB is recognized worldwide as an important public health issue. To study the relationship between the age of patients with pulmonary TB and serum IL-6 levels, from the other hand, the severity of this disease with IL-6 levels. This study included 30 patients (16 female and 14 male) with pulmonary TB and 10 healthy persons (5 female and 5 male) as control group for comparison. An ELISA assay was used to quantify IL-6 in the sera. The results showed a significant increase of IL-6 levels with increase of age of patients, in (23-38) year old patients the IL-6 levels (median= 17.9 pg/ml, range 12.3-29.1), while in (50-70) year old patien
... Show MoreIn this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.
Immunization is one of the most cost-effective and successful public health applications. The results of immunization are difficult to see as the incidence of disease occurrence is low while adverse effects following the immunization are noticeable, particularly if the vaccine was given to apparently healthy person. High safety expectations of population regarding the vaccines so they are more prone to hesitancy regarding presence of even small risk of adverse events which may lead to loss of pub
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreThis paper is used for solving component Volterra nonlinear systems by means of the combined Sumudu transform with Adomian decomposition process. We equate the numerical results with the exact solutions to demonstrate the high accuracy of the solution results. The results show that the approach is very straightforward and effective.
Epithelial ovarian cancer is the leading cause of cancer deaths from gynecological malignancies. Angiogenesis is considered essential for tumor growth and the development of metastases. VEGF and IL?8 are potent angiostimulatory molecules and their expression has been demonstrated in many solid tumors, including ovarian cancer.VEGF and IL-8 concentrations were measured by ELISA test (HumanVEGF,IL-8). Bioassay ELISA/ US Biological / USA).The median VEGF and IL-8 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors and in healthy controls.Pretreatment VEGF and IL-8 serum levels might be regarded as an additional tool in the differentiation of ovarian tumors.
The objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show More