Preferred Language
Articles
/
iher-pABVTCNdQwCNJEx
Artificial intelligence‐based modeling of novel non‐thermal milk pasteurization to achieve desirable color and predict quality parameters during storage
...Show More Authors
Abstract<sec><label></label><p>This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (<italic>p</italic> > 0.05) for lightness (<italic>L</italic>*), redness‐greenness (<italic>a</italic>*), yellowness‐blueness (<italic>b</italic>*), total color differences (∆<italic>E</italic>), hue angle (<italic>h</italic>), chroma (<italic>C</italic>), whiteness (WI), yellowness (YI), and browning index (BI). ANFIS well‐predicted milk fat and moisture content using quadratic and two‐factor interaction models with mean errors of .00858–.01260 and correlation coefficient of .8051–.8205. Stability tests showed <italic>L</italic>* and WI reduced while <italic>a</italic>*, <italic>b</italic>*, Δ<italic>E</italic>, <italic>h</italic>, <italic>C</italic>, YI, and BI increased during the storage. NP milk had 77.21% higher half‐life than CP, as predicted by ANFIS modeling. Findings indicated milk quality characteristics could be estimated based on physical parameters (e.g., color components), contributing to sustainable food production.</p></sec><sec><title>Practical applications

The findings offer practical applications of artificial intelligence (AI) as an innovative monitoring and prediction technique to enhance food quality and sustainability. The proposed methodology makes the real‐time prediction of milk quality feasible by leveraging AI and physical parameters. An adaptive neuro‐fuzzy inference system (ANFIS) accurately predicts moisture and fat contents according to color values, facilitating quality assessment. Stability tests during cold storage provide insights into milk quality changes over time, aiding in determining key parameters in predictive modeling. The proposed approach was found to be applicable to both conventional and non‐thermal pasteurized milk. This study also provides a step‐by‐step protocol, facilitating the implementation of emerging technologies in the food industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage
...Show More Authors

Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Numerical Study of Thermal Conductivity Effect on The Performance of Thermal Energy Storage
...Show More Authors

In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Explainable Artificial Intelligence In The Digital Sustainability Administration
Artificial Intelligence and Trends Using in Sustainability Audit: A Bibliometric Analysis
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Al-academy
The role of artificial intelligence in revolutionizing the clothing and textile industry
...Show More Authors

 The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 30 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks
...Show More Authors

The sale of facial features is a new modern contractual development that resulted from the fast transformations in technology, leading to legal, and ethical obligations. As the need rises for human faces to be used in robots, especially in relation to industries that necessitate direct human interaction, like hospitality and retail, the potential of Artificial Intelligence (AI) generated hyper realistic facial images poses legal and cybersecurity challenges. This paper examines the legal terrain that has developed in the sale of real and AI generated human facial features, and specifically the risks of identity fraud, data misuse and privacy violations. Deep learning (DL) algorithms are analyzed for their ability to detect AI genera

... Show More
View Publication
Scopus (8)
Scopus Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 17 2022
Journal Name
Applied Sciences
Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange
...Show More Authors

The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (21)
Scopus Clarivate Crossref