Preferred Language
Articles
/
iher-pABVTCNdQwCNJEx
Artificial intelligence‐based modeling of novel non‐thermal milk pasteurization to achieve desirable color and predict quality parameters during storage
Abstract<sec><label></label><p>This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (<italic>p</italic> > 0.05) for lightness (<italic>L</italic>*), redness‐greenness (<italic>a</italic>*), yellowness‐blueness (<italic>b</italic>*), total color differences (∆<italic>E</italic>), hue angle (<italic>h</italic>), chroma (<italic>C</italic>), whiteness (WI), yellowness (YI), and browning index (BI). ANFIS well‐predicted milk fat and moisture content using quadratic and two‐factor interaction models with mean errors of .00858–.01260 and correlation coefficient of .8051–.8205. Stability tests showed <italic>L</italic>* and WI reduced while <italic>a</italic>*, <italic>b</italic>*, Δ<italic>E</italic>, <italic>h</italic>, <italic>C</italic>, YI, and BI increased during the storage. NP milk had 77.21% higher half‐life than CP, as predicted by ANFIS modeling. Findings indicated milk quality characteristics could be estimated based on physical parameters (e.g., color components), contributing to sustainable food production.</p></sec><sec><title>Practical applications

The findings offer practical applications of artificial intelligence (AI) as an innovative monitoring and prediction technique to enhance food quality and sustainability. The proposed methodology makes the real‐time prediction of milk quality feasible by leveraging AI and physical parameters. An adaptive neuro‐fuzzy inference system (ANFIS) accurately predicts moisture and fat contents according to color values, facilitating quality assessment. Stability tests during cold storage provide insights into milk quality changes over time, aiding in determining key parameters in predictive modeling. The proposed approach was found to be applicable to both conventional and non‐thermal pasteurized milk. This study also provides a step‐by‐step protocol, facilitating the implementation of emerging technologies in the food industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jun 01 2024
Journal Name
Innovative Food Science &amp; Emerging Technologies
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Innovative Food Science &amp; Emerging Technologies
Scopus (6)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
International Journal Of Medical Informatics
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Explainable Artificial Intelligence In The Digital Sustainability Administration
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Intelligent Systems And Applications In Engineering
Scopus (3)
Scopus
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
An Artificial Intelligence-based Proactive Network Forensic Framework

     is at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The role of competitive intelligence and reverse engineering to achieve competitive advantage

Abstract

In light of the great technological development and the emergence of globalization has increased global competition, where it became competitive exercise pressure on all sectors. In light of this companies mast enviorment depend on the means that keeps them on the competitive position through access to information about competitors in order to help them to draw a strategy that will achieve a competitive edge either through excellence or reduce the costs of their products and this means intelligence competitive and reverse engineering that help to gain information on competitors analyze and put of the decision-maker From this point formed the idea of ​​research in the statement of the role of

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Publication Date
Sun Jan 01 2023
Journal Name
Lecture Notes In Networks And Systems
Using Artificial Intelligence and Metaverse Techniques to Reduce Earning Management

This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d

... Show More
Crossref (1)
Scopus Crossref
View Publication