Preferred Language
Articles
/
iher-pABVTCNdQwCNJEx
Artificial intelligence‐based modeling of novel non‐thermal milk pasteurization to achieve desirable color and predict quality parameters during storage
Abstract<sec><label></label><p>This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (<italic>p</italic> > 0.05) for lightness (<italic>L</italic>*), redness‐greenness (<italic>a</italic>*), yellowness‐blueness (<italic>b</italic>*), total color differences (∆<italic>E</italic>), hue angle (<italic>h</italic>), chroma (<italic>C</italic>), whiteness (WI), yellowness (YI), and browning index (BI). ANFIS well‐predicted milk fat and moisture content using quadratic and two‐factor interaction models with mean errors of .00858–.01260 and correlation coefficient of .8051–.8205. Stability tests showed <italic>L</italic>* and WI reduced while <italic>a</italic>*, <italic>b</italic>*, Δ<italic>E</italic>, <italic>h</italic>, <italic>C</italic>, YI, and BI increased during the storage. NP milk had 77.21% higher half‐life than CP, as predicted by ANFIS modeling. Findings indicated milk quality characteristics could be estimated based on physical parameters (e.g., color components), contributing to sustainable food production.</p></sec><sec><title>Practical applications

The findings offer practical applications of artificial intelligence (AI) as an innovative monitoring and prediction technique to enhance food quality and sustainability. The proposed methodology makes the real‐time prediction of milk quality feasible by leveraging AI and physical parameters. An adaptive neuro‐fuzzy inference system (ANFIS) accurately predicts moisture and fat contents according to color values, facilitating quality assessment. Stability tests during cold storage provide insights into milk quality changes over time, aiding in determining key parameters in predictive modeling. The proposed approach was found to be applicable to both conventional and non‐thermal pasteurized milk. This study also provides a step‐by‐step protocol, facilitating the implementation of emerging technologies in the food industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
The 53rd U.s. Rock Mechanics/geomechanics Symposium
Scopus (7)
Scopus
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Numerical Study of Thermal Conductivity Effect on The Performance of Thermal Energy Storage

In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Explainable Artificial Intelligence In The Digital Sustainability Administration
Scopus Crossref
View Publication
Publication Date
Fri Dec 15 2023
Journal Name
Al-academy
The role of artificial intelligence in revolutionizing the clothing and textile industry

 The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
Crossref
View Publication Preview PDF