Preferred Language
Articles
/
iher-pABVTCNdQwCNJEx
Artificial intelligence‐based modeling of novel non‐thermal milk pasteurization to achieve desirable color and predict quality parameters during storage
...Show More Authors
Abstract<sec><label></label><p>This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (<italic>p</italic> > 0.05) for lightness (<italic>L</italic>*), redness‐greenness (<italic>a</italic>*), yellowness‐blueness (<italic>b</italic>*), total color differences (∆<italic>E</italic>), hue angle (<italic>h</italic>), chroma (<italic>C</italic>), whiteness (WI), yellowness (YI), and browning index (BI). ANFIS well‐predicted milk fat and moisture content using quadratic and two‐factor interaction models with mean errors of .00858–.01260 and correlation coefficient of .8051–.8205. Stability tests showed <italic>L</italic>* and WI reduced while <italic>a</italic>*, <italic>b</italic>*, Δ<italic>E</italic>, <italic>h</italic>, <italic>C</italic>, YI, and BI increased during the storage. NP milk had 77.21% higher half‐life than CP, as predicted by ANFIS modeling. Findings indicated milk quality characteristics could be estimated based on physical parameters (e.g., color components), contributing to sustainable food production.</p></sec><sec><title>Practical applications

The findings offer practical applications of artificial intelligence (AI) as an innovative monitoring and prediction technique to enhance food quality and sustainability. The proposed methodology makes the real‐time prediction of milk quality feasible by leveraging AI and physical parameters. An adaptive neuro‐fuzzy inference system (ANFIS) accurately predicts moisture and fat contents according to color values, facilitating quality assessment. Stability tests during cold storage provide insights into milk quality changes over time, aiding in determining key parameters in predictive modeling. The proposed approach was found to be applicable to both conventional and non‐thermal pasteurized milk. This study also provides a step‐by‐step protocol, facilitating the implementation of emerging technologies in the food industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq
...Show More Authors

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Oct 30 2024
Journal Name
Internet Technology Letters
Using <scp>5G</scp> Standards for Smart Healthcare Applications and Designing an Artificial Intelligence‐Based Industry 4.0 Communication System
...Show More Authors
ABSTRACT<p>The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing </p> ... Show More
Scopus Clarivate Crossref
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage
...Show More Authors

Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Numerical Study of Thermal Conductivity Effect on The Performance of Thermal Energy Storage
...Show More Authors

In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio

... Show More
View Publication Preview PDF
Crossref (5)
Crossref