Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreA new method presented in this work to detect the existence of hidden
data as a secret message in images. This method must be applyied only on images which have the same visible properties (similar in perspective) where the human eyes cannot detect the difference between them.
This method is based on Image Quality Metrics (Structural Contents
Metric), which means the comparison between the original images and stego images, and determines the size ofthe hidden data. We applied the method to four different images, we detect by this method the hidden data and find exactly the same size of the hidden data.
Vitamins k is an important fat-soluble vitamin that can be obtained from plants, bacteria and animals and is necessary for the blood clotting. It plays a key function as a cofactor in the synthesizing of blood clotting proteins in the liver; recently, the interest for its functions in extra-hepatic tissue has increased. Vitamin k deficiency is usually caused by abnormal absorption rather than in the lack of vitamin in food. Apart from its impact on clotting, chronic subclinical deficiency of vitamin K maybe a risk factor for many diseases such as osteoporosis, atherosclerosis, cancer, insulin resistance, neurodegenerative diseases and others, while current food intake guidelines be focused on the daily dose necessary to avoid blood loss.
... Show MoreSingle crystals of pure and Cu+2,Fe+2 doped potassium sulfate were grown from aqueous solutions by the slow evaporation technique at room temperature. with dimension of (11x9 x4)mm3 and ( 10x 8x 5)mm3 for crystal doping with Cu &Fe respectively. The influence of doping on crystal growth and its structure revealed a change in their lattice parameters(a=7.479 Ã… ,b=10.079 Ã… ,c=5.772 Ã…)for pure and doping (a=9.687 Ã…, b=14.926 Ã… ,c= 9.125 Ã…) & (a=9.638 Ã… , b= 8.045 Ã… ,c=3.271 Ã…) for Cu & Fe respectively. Structure analysis of the grown crystals were obtained by X-Ray powder diffraction measurements. The diffraction patterns were analyzed by the Rietveld refinement method. Rietveld refinement plo
... Show More