Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Counting Functions to Generate The Primes in the RSA Algorithm and Diffie-Hellman Key Exchange
...Show More Authors

        The Rivest–Shamir–Adleman (RSA) and the Diffie-Hellman (DH) key exchange are famous methods for encryption. These methods  depended on selecting the primes p and q in order  to be secure enough . This paper shows that the named methods used the primes which are found by some arithmetical function .In the other sense, no need to think about getting primes p and q and how they are secure enough, since the arithmetical function enable to build the primes in such complicated way to be secure. Moreover, this article   gives  new construction  of the  RSA  algorithm and DH key  exchange using the

primes p,qfrom areal number x.

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 30 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
An efficient artificial fish swarm algorithm with harmony search for scheduling in flexible job-shop problem
...Show More Authors

Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimization of Gas Lifting Design in Mishrif Formation of Halfaya Oil Field
...Show More Authors

The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
DNA Encoding and STR Extraction for Anomaly Intrusion Detection Systems
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 15 2024
Journal Name
Journal Of Al-turath University College
A Comparison of Traditional and Optimized Multiple Grey Regression Models with Water Data Application
...Show More Authors

Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m

... Show More
View Publication
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study of A Improve Model For The D-D Nuclear Fusion Reaction Cross Section
...Show More Authors

     The study of improved model for measuring the total nuclear fusion cross section characteristics  the D-D reaction may play an important role in deciding  or determining the hot plasma parameters such as mean free path , the reaction rate , reactivity and energy for emitted neutrons or protons in our work we see the it is necessary to modify the empirical formulas included the total cross section in order to arrive or achieve good agreement with the international publish result.    

View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Parametric Analysis of Surface Roughness and Metal Removal Rate during Electrical Discharge Machining of O1 Tool Steel
...Show More Authors

This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by sur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Design of Multi-Rate Multi-Zone Wireless Fuzzy Temperature Control System for Greenhouse Application
...Show More Authors

sensor sampling rate (SSR) may be an effective and crucial field in networked control systems.  Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur

... Show More
View Publication Preview PDF
Crossref