Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
There are many techniques that can be used to estimate the spray quality traits such as the spray coverage, droplet density, droplet count, and droplet diameter. One of the most common techniques is to use water sensitive papers (WSP) as a spray collector on field conditions and analyzing them using several software. However, possible merger of some droplets could occur after they deposit on WSP, and this could affect the accuracy of the results. In this research, image processing technique was used for better estimation of the spray traits, and to overcome the problem of droplet merger. The droplets were classified as non-merged and merged droplets based on their roundness, then the merged droplets were separated based on the average non-m
... Show MoreIn this research, an enhancement in lubricating, rheological, and filtration properties of unweighted water-based mud is fundamentally investigated using XC polymer NPs with 0.2gm, 0.5gm, 1gm, 2gm, and 4gm concentrations. Bentonite, that had been used in the preparation of unweighted water-based mud, was characterized using XRF-1800 Sequential X-ray Fluorescence Spectrometer, XRD-6100/7000 X-ray Diffractometer, and Malvern Mastersizer 2000 particle size analyzer, respectively. Lubricating, rheology and filtration properties of unweighted water-based mud were measured at room temperature (35°C) using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. XC Polymer N
... Show MoreSurface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
Tooth restoration one of the most common procedures in dental practice. The replacement of the entire restoration leads to loss of tooth structure and increase risk of pulp injury; replacement is also time consuming and costly. According to the minimally invasive approach when minimal defects, repair is the better choice than the total replacement of the restoration. This study aims to evaluate repair rating versus replacement treatment procedure for defective composite fillings among Iraqi dentists. Material and methodology: A questionnaire survey were designed and distributed to 184 post-graduate dentists in Iraq. The inquiry pertained general information; including their clinical experience in years, their preference in terms of direct c
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreAbstract: The increased interest in developing new photonic devices that can support high data rates, high sensitivity and fast processing capabilities for all optical communications, motivates a pre stage pulse compressor research. The pre-stage research was based on cascading single mode fiber and polarization maintaining fiber to get pulse compression with compression factor of 1.105. The demand for obtaining more précised photonic devices; this work experimentally studied the behavior of Polarization maintaining fiber PMF that is sandwiched between two cascaded singe mode fiber SMF and fiber Bragg gratings FBG. Therefore; the introduced interferometer performed hybrid interference of both Mach-Zehnder
... Show More