Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
Blockchain has garnered the most attention as the most important new technology that supports recent digital transactions via e-government. The most critical challenge for public e-government systems is reducing bureaucracy and increasing the efficiency and performance of administrative processes in these systems since blockchain technology can play a role in a decentralized environment and execute a high level of security transactions and transparency. So, the main objectives of this work are to survey different proposed models for e-government system architecture based on blockchain technology implementation and how these models are validated. This work studies and analyzes some research trends focused on blockchain
... Show MoreMotives: Baghdad is the capital city and an important political, administrative, social, cultural and economic centre of Iraq. Baghdad’s growth and development has been significantly influenced by efforts to accommodate various needs of its steadily growing population. Uncontrolled population and urban growth have exerted negative effects in numerous dimensions, including environmental sustainability because urban expansion occurred in green spaces within the city and the surrounding areas.Aim: The aim of this study was to examine the planning solutions in Baghdad’s green areas in the past and at present, and to identify the key changes in the city’s green areas, including changes in the ratio of green urban spaces to the tota
... Show MoreSensitive information of any multimedia must be encrypted before transmission. The dual chaotic algorithm is a good option to encrypt sensitive information by using different parameters and different initial conditions for two chaotic maps. A dual chaotic framework creates a complex chaotic trajectory to prevent the illegal use of information from eavesdroppers. Limited precisions of a single chaotic map cause a degradation in the dynamical behavior of the communication system. To overcome this degradation issue in, a novel form of dual chaos map algorithm is analyzed. To maintain the stability of the dynamical system, the Lyapunov Exponent (LE) is determined for the single and dual maps. In this paper, the LE of the single and dual maps
... Show MoreThe automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve
... Show MoreBlockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a
... Show MoreRecently, wireless communication environments with high speeds and low complexity have become increasingly essential. Free-space optics (FSO) has emerged as a promising solution for providing direct connections between devices in such high-spectrum wireless setups. However, FSO communications are susceptible to weather-induced signal fluctuations, leading to fading and signal weakness at the receiver. To mitigate the effects of these challenges, several mathematical models have been proposed to describe the transition from weak to strong atmospheric turbulence, including Rayleigh, lognormal, Málaga, Nakagami-m, K-distribution, Weibull, Negative-Exponential, Inverse-Gaussian, G-G, and Fisher-Snedecor F distributions. This paper extensive
... Show More