Steganography is an important class of security which is widely used in computer and network security nowadays. In this research, a new proposed algorithm was introduced with a new concept of dealing with steganography as an algorithmic secret key technique similar to stream cipher cryptographic system. The proposed algorithm is a secret key system suggested to be used in communications for messages transmission steganography
We study one example of hyperbolic problems it's Initial-boundary string problem with two ends. In fact we look for the solution in weak sense in some sobolev spaces. Also we use energy technic with Galerkin's method to study some properties for our problem as existence and uniqueness
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
Let M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
Research Hypothesis from the fact that kicks off the effect that agricultural production in Iraq plays an important role in overcoming the food problem and achieving food security, but he became far far away from the provision of sufficient quantities of food products and then securing the Iraqi consumer food basket by the challenges faced by the agricultural sector.
To prove the hypothesis research in its structure in three axes came, the first axis eating historical significance to the subject of food over time periods as well as to clarify the concept of food security, and the second axis touched on the most important challenges facing the agricultural sector in Iraq and prevent the achievement of food requirements for members of
The Rafidian artist discussed the headdresses of his idols with a varied scholarly momentum, so each idol had its own cover as this door of diversity contributed to the enrichment of Rafidian thought and full knowledge of their ideas and beliefs consistent with their multiple symbolic connections such as architecture, for example. The previous one, if not its entirety.
A research such as this (the discursive connections to the head-covers of the deities of the Mesopotamian civilization) aims to clarify the confusion that occurs through four chapters: The first chapter included: the research problem, the importance of research and the need for it, the objectives of the research, the temporal, spatial and objective limits of research, a