Preferred Language
Articles
/
iRYW14kBVTCNdQwCMI0A
On-Board Digital Twin Based on Impedance and Model Predictive Control for Aerial Robot Grasping
...Show More Authors

Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach. The developed on-board DT offered a model where interaction with the unknown payload and aerial robot dynamics is informed. Beside this, the results showed the ability of the introduced DT to foretell the conditions of the forces acting on the payload which helped to predict the situation of aerial manipulation process. Additionally, the results showed that the DT model could detect real-time errors in the physical asset.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 30 2020
Journal Name
Research On Crops
Studies on growth and yield indicators for kohlrabi (Brassica oleracea) plant treated with mineral fertilizers and root enhancers
...Show More Authors

Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Study of Annealing and Dopping Effect of Zn on Structural and Optical Properties for CdTe Thin Films
...Show More Authors

In this research thin films of (CdTe) have been prepared as pure and doped by Zn
with different ratios (1,2,3,4,5)% at thickness (400+25)nm with deposition rate (2±0.1)nm,
deposited on glass substrate at R.T. by using thermal evaporation in vacuum . All samples
were annealed at temperature (523,573,623,673)K at 1h.
The structural prop erties of all prepared thin films, doped and undoped have been
studied by using XRD. The analysis reveals that the structures of the films were
polycrystalline and typed cubic with a preferred orientation along (111) plane for the
undoped films with (2,3)% of zinc , and shifting (2ÆŸ) for doped films . The annealing films
at temperature 573 K and Zn:3% show decreasing in

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Influence of pressure and temperature on CO2-nanofluid interfacial tension: Implication for enhanced oil recovery and carbon geosequestration
...Show More Authors

Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres

... Show More
Publication Date
Thu May 24 2018
Journal Name
Aip Conference Proceedings
The study effect of weight fraction on thermal and electrical conductivity for unsaturated polyester composite alone and hybrid
...Show More Authors

In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).

View Publication
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Optimal UAV Deployment for Data Collection in Deadline-based IoT Applications
...Show More Authors

The deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Computer Engineering And Intelligent Systems
Static Analysis Based Behavioral API for Malware Detection using Markov Chain
...Show More Authors

Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l

... Show More
Publication Date
Sun Feb 13 2022
Journal Name
Petroleum & Coal
Laboratory-Based Correlations to Estimate Geomechanical Properties for Carbonate Tight Reservoir.
...Show More Authors

Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters

... Show More
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Mon Nov 09 2020
Journal Name
Construction Research Congress 2020
Alternative Risk Models for Optimal Investment in Portfolio-Based Community Solar
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref