Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach. The developed on-board DT offered a model where interaction with the unknown payload and aerial robot dynamics is informed. Beside this, the results showed the ability of the introduced DT to foretell the conditions of the forces acting on the payload which helped to predict the situation of aerial manipulation process. Additionally, the results showed that the DT model could detect real-time errors in the physical asset.
Objectives: To determine the effectiveness of the educational program on nursing staff knowledge about infection control measures at the Intensive Care Unit in Al-Diwaniya Teaching Hospital.
Methodology: A pre-experimental design (one group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from ( 20th February to 5th March, 2020) on a non-probability (purposive) sample consisting of (25 nurses) working in ICU. A questionnaire was built as a data collection tool and consisted of two parts:
First part: The demographic characteristics of the nursing staff (age, gender, level of education, years of experien
... Show Moret:
The most famous thing a person does is talk. He loves and hates, and continues with it confirming relationships, and with it, too, comes out of disbelief into faith. Marry a word and separate with a word. He reaches the top of the heavens with a kind word, with which he will gain the pleasure of God, and the Lord of a word that the servant speaks to which God writes with our pleasure or throws him on his face in the fire. Emotions are inflamed, the United Nations is intensified with a word, and relations between states and war continue with a word.
What comes out of a person’s mouth is a translator that expresses the repository of his conscience and reveals the place of his bed, for it is evidence of
... Show MoreThe Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this paper, our aim is to solve analytically a nonlinear social epidemic model as an initial value problem (IVP) of ordinary differential equations. The mathematical social epidemic model under study is applied to alcohol consumption model in Spain. The economic cost of alcohol consumption in Spain is affected by the amount of alcohol consumed. This paper refers to the study of alcohol consumption using some analytical methods. Adomian decomposition and variation iteration methods for solving alcohol consumption model have used. Finally, a compression between the analytic solutions of the two used methods and the previous actual values from 1997 to 2007 years is obtained using the absolute and
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show More