Assessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviation, shape factor, scale factor, probability density function, cumulative distribution function, measured and Weibull estimated of wind power density, wind energy density, determination factor, and root mean square error. A comparison is made with the previous studies to select wind class of selected sites in the present work. At selected stations, the wind energy potential was the best for Najaf, Kut Al-Hai, and Baghdad respectively. According to the international wind classification, the selected sites has fair class at stations elevation. Kut Al-Hai has fairly good class at selected heights. While Najaf have fairly good at (90m, and 120m) whereas Baghdad has a fairly good class just at (120 m).
The weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show MoreThe construction sector consumes large amounts of energy during the lifetime of a building. This consumption starts with manufacturing and transferring building materials to the sites and demolishing this building after a long time of occupying it. The topic of energy conservation and finding the solution inside the building spaces become an important and urgent necessity. It is known that the roof is exposed to a high amount of thermal loads compared to other elements in a building envelope, so this needs some solutions and treatments to control the flow of the heat through them. These solutions and treatments may be achieved by using nanomaterials. Recently, nanomaterials have high properties, so that this made them go
... Show MoreWireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreHeat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he
... Show MoreA large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreThe effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show More