Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.
Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigne
... Show MoreStarting with a problem of the weakness of accounting disclosure in some companies administration when preparing and presenting the financial reports which are submitted to the Tax authority. This problem impacts on Tax authority performance (The effect on the quality of the performance of the tax authority), because of the lack of conviction for the information contained in those reports, and the failure to achieve accurate results in tax authority performance that leads to a negative impact on determining taxable income and affect tax revenue, as well as negative impact on determining taxable income and affect tax revenue, as well as negati
... Show MoreThe research deals with the structures of the contemporary travelers' buildings in particular, and which is a functional complex installations where flexibility, technical and stereotypes play an important role as well as the human values These facilities must represent physiological and psychological comfort for travelers. TThose are facilities where architectural form plays a distinguished role in reversing the specialty and identity of the building. Hence the importance of the subject has been in forced, as a result for the need to study these facilities and to determine the impact and affects by the surrounding environment, to the extent of the urban, environmental, urban, social, and psychological levels. The importance of the resea
... Show MoreThe Internet of Things (IoT) has great importance in the medical industry. The creation of intelligent sensors, intelligent machines, and superior algorithms for lightweight communication made it feasible to connect medical equipment in order to monitor biomedical signals and also to detect illnesses in patients without human intervention. This new IoT and medical equipment connection is called IoMT. This IoMT model is most adapted to this pandemic since every human being has to be interconnected and monitored via a larger communication network. Hence, this article provides an overview of remote healthcare systems, monitoring ingestible sensors, mobile health, smart hospitals, and improved chronic disease management focused on t
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreThis article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreThe unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here
... Show MoreIn this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show More