Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.
Objectives: The study aims to evaluate patients’ performance toward insulin injection after training program to
identify the variation in skill of patients in insulin injection technique with regard to some variable (i.e.
educational level and duration of insulin injection.
Methodology: A quasi experimental study has been conducted on diabetic patients.
An observational checklist had been prepared which consisted of 4 main areas with 37 sub-items, which are
syringe preparation for injection, insulin drawing; skin preparation for injection and insulin injection. Each of the
sub-items has 2 options yes or no. One score for positive answer and zero for no.
The sample of the study consisted of (n =30) males and females
The aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show MoreString matching is seen as one of the essential problems in computer science. A variety of computer applications provide the string matching service for their end users. The remarkable boost in the number of data that is created and kept by modern computational devices influences researchers to obtain even more powerful methods for coping with this problem. In this research, the Quick Search string matching algorithm are adopted to be implemented under the multi-core environment using OpenMP directive which can be employed to reduce the overall execution time of the program. English text, Proteins and DNA data types are utilized to examine the effect of parallelization and implementation of Quick Search string matching algorithm on multi-co
... Show MoreSustainable plant protection and the economy of plant crops worldwide depend heavily on the health of agriculture. In the modern world, one of the main factors influencing economic growth is the quality of agricultural produce. The need for future crop protection and production is growing as disease-affected plants have caused considerable agricultural losses in several crop categories. The crop yield must be increased while preserving food quality and security and having the most negligible negative environmental impact. To overcome these obstacles, early discovery of satisfactory plants is critical. The use of Advances in Intelligent Systems and information computer science effectively helps find more efficient and low-cost solutions. Thi
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreJournal of Theoretical and Applied Information Technology is a peer-reviewed electronic research papers & review papers journal with aim of promoting and publishing original high quality research dealing with theoretical and scientific aspects in all disciplines of IT (Informaiton Technology
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
Abstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show More