Preferred Language
Articles
/
hhZcVocBVTCNdQwCA0au
The food web prey-predator model with toxin
...Show More Authors

Crossref
View Publication
Publication Date
Mon Aug 21 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
Delay in eco-epidemiological prey-predator model with predation fear and hunting cooperation
...Show More Authors

It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Mathematical Biology And Neuroscience
Effects of fear and refuge strategy dependent on predator in food web dynamics
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
The Dynamics and Analysis of Stage-Structured Predator-Prey Model Involving Disease and Refuge in Prey Population
...Show More Authors
Abstract<p>Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by </p> ... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of Sokol-Howell Prey-Predator Model Involving Strong Allee Effect
...Show More Authors

In this paper,  a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results

View Publication
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Physics: Conference Series
The Bifurcation analysis of Prey-Predator Model in The Presence of Stage Structured with Harvesting and Toxicity
...Show More Authors
Abstract<p>For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E<sub>0</sub> the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E<sub>1</sub> and E<sub>2</sub> happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened. </p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Differential Equations
Dynamical Behaviours of Stage-Structured Fractional-Order Prey-Predator Model with Crowley-Martin Functional Response
...Show More Authors

In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator.  e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated.  e su‰cient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to con‹rm the theoretical results.

Preview PDF
Scopus (3)
Scopus
Publication Date
Wed Jun 28 2023
Journal Name
Mathematics
The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey
...Show More Authors

A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Abstract And Applied Analysis
Dynamical Behaviors of a Fractional-Order Three Dimensional Prey-Predator Model
...Show More Authors

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Tue Dec 24 2024
Journal Name
Malaysian Journal Of Mathematical Sciences
Exploring the Role of Hunting Cooperation, and Fear in a Prey-Predator Model with Two Age Stages
...Show More Authors

The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore

... Show More
View Publication
Clarivate Crossref
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL
...Show More Authors

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF