As a result of recent developments in highway research as well as the increased use of vehicles, there has been a significant interest paid to the most current, effective, and precise Intelligent Transportation System (ITS). In the field of computer vision or digital image processing, the identification of specific objects in an image plays a crucial role in the creation of a comprehensive image. There is a challenge associated with Vehicle License Plate Recognition (VLPR) because of the variation in viewpoints, multiple formats, and non-uniform lighting conditions at the time of acquisition of the image, shape, and color, in addition, the difficulties like poor image resolution, blurry image, poor lighting, and low contrast, these must be overcome. This paper proposed a model by using Modify Bidirectional Associative Memory (MBAM), which is one type of Hetero-associative memory, MBAM works in two phases (learning and convergence phases) to recognize the number plate, and this proposed model can overcome these difficulties because MBAM's associative memory has a high ability to accept noise and distinguish distorted images, as well as the speed of the calculation process due to the small size of the network. The accuracy of plate region localization is 99.6%, the accuracy for character segmentation is 98%, and the achieved accuracy for character recognition is 100% in various circumstances
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreImage retrieval is an active research area in image processing, pattern recognition, and
computer vision. In this proposed method, there are two techniques to extract the feature
vector, the first one is applying the transformed algorithm on the whole image and the second
is to divide the image into four blocks and then applying the transform algorithm on each part
of the image. In each technique there are three transform algorithm that have been applied
(DCT, Walsh Transform, and Kekre’s Wavelet Transform) then finding the similarity and
indexing the images, useing the correlation between feature vector of the query image and
images in database. The retrieved method depends on higher indexing number. <
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreThe agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreA new Species of the Cerambycinae belonging to the genus Hesperophanes was found new to the fauna of Iraq and Science. H. testaceus was studied in details and the male genitalia were illustrated. Type's paratypes and the locality of this newly described Species were mentioned.
A sensitivity-turbidimetric method at (0-180o) was used for detn. of mebeverine in drugs by two solar cell and six source with C.F.I.A.. The method was based on the formation of ion pair for the pinkish banana color precipitate by the reaction of Mebeverine hydrochloride with Phosphotungstic acid. Turbidity was measured via the reflection of incident light that collides on the surface particles of precipitated at 0-180o. All variables were optimized. The linearity ranged of Mebeverine hydrochloride was 0.05-12.5mmol.L-1, the L.D. (S/N= 3)(3SB) was 521.92 ng/sample depending on dilution for the minimum concentration , with correlation coefficient r = 0.9966while was R.S.D%
... Show More