Preferred Language
Articles
/
hBZ844sBVTCNdQwCguO8
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research.  For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.

Scopus Crossref
View Publication
Publication Date
Fri Sep 12 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The value of ultrasound and color Doppler ultrasonography in the evaluation of periapical lesions in comparison to histopathological and/or surgical findings
...Show More Authors

Background: Imaging techniques play a very important role in the specialty of endodontic. The ultrasonographic technique is non-expensive procedure, safe, and reproducible. The aim of the study was to determine the sensitivity, specificity, and accuracy of ultrasound and color Doppler ultrasonography in evaluation of periapical lesions (cyst, granuloma, mixed lesion “cyst within graulomas mass”, and abscess. Subject, Material and method: The sample consists of prospective study for 64 Iraqi participants who attended Karbalaa Specialized Center for Dentistry (males & females). Those patients were diagnosed clinically and radiographically as having periapical lesions of dental origin. They were examined by real time ultrasound and color

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 15 2023
Journal Name
Bionatura
Effect of traditional and automated sorting on some tomato's properties
...Show More Authors

This study was conducted in a laboratory experiment at the University of Baghdad, College of Science, computing Department, 5 km from the center of Baghdad city, in 2021 to evaluate the sorting method for the tomato crop. The experiments were conducted in a factorial experiment under a complete randomized design with three replications and using SAS analysis, artificial neural network, image processing, the study of external characteristics, and physical features; fruit surface area and fruit circumference were 1334.46 cm2,57.53 cm2 and free diseases. The error value was less than zero, while training with outputs recorded the highest value and which was 5. The neural network's performance between the input and the mean square of th

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 27 2023
Journal Name
Icst Transactions On Scalable Information Systems
Tools and Process of Defect Detection in Automated Manufacturing Systems
...Show More Authors

INTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy

... Show More
View Publication
Crossref (3)
Clarivate Crossref
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Iraqi Journal Of Physics
Design an Efficient Neural Network to Determine the Rate of Contamination in the Tigris River in Baghdad City
...Show More Authors

This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t

... Show More
View Publication
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials & Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Differential evolution detection models for SMS spam
...Show More Authors

With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Fri Jan 10 2025
Journal Name
Chemchemtech
LC-MS/MS METHOD FOR THE DETERMINATION OF IMATINIB MESYLATE IN BLOOD PLASMA SAMPLES AFTER ADSORPTION BY COPPER TANNIC ACID
...Show More Authors

A novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Jan 10 2025
Journal Name
Chemchemtech
LC-MS/MS METHOD FOR THE DETERMINATION OF IMATINIB MESYLATE IN BLOOD PLASMA SAMPLES AFTER ADSORPTION BY COPPER TANNIC ACID
...Show More Authors

A novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref