This research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates across districts in Iraq. Considering poverty rate as the dependent variable with eight explanatory variables. The analysis confirmed spatial dependence among regions, as indicated by the estimated values of the spatial correlation parameter (ρ) across different scenarios. It made clear that poverty rates are heavily influenced by spatial dependence and that failing to consider this could result in the loss of important information regarding the phenomenon and eventually impair the accuracy of statistical index estimation. This enhancement offers suggestions for methods of reducing poverty.
The toxicological risks and lifetime cancer risks associated with exposure to disinfection by-products (DBPs) including Halloacetic acids (HAAs) and trihalomethanes (THMs) compounds by drinking water in several districts in Wassit Province were estimated. The seasonal variation of HAAs and THMs compounds in drinking water have indicated that the mean values for total HAAs (THAAs) and total THMs (TTHMs) ranged from 43.2 to 72.4 mg/l and from 40 to 115.5 mg/l, respectively. The World health organization index for additive toxicity approach was non-compliant with the WHO guideline value in summer and autumn seasons and this means that THMs concentration has adverse toxic health effects. The multi-pathway of lifetime hu
... Show MoreEngineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public a
... Show MoreVisualization of subsurface geology is mainly considered as the framework of the required structure to provide distribution of petrophysical properties. The geological model helps to understand the behavior of the fluid flow in the porous media that is affected by heterogeneity of the reservoir and helps in calculating the initial oil in place as well as selecting accurate new well location. In this study, a geological model is built for Qaiyarah field, tertiary reservoir, relying on well data from 48 wells, including the location of wells, formation tops and contour map. The structural model is constructed for the tertiary reservoir, which is an asymmetrical anticline consisting of two domes separated by a saddle. It is found that
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn this paper, a comparison of production and domestic consumption of Iraq's food industries within economic environment of a sample of countries is presented. Tracked by a number of variables, To extrapolate the reality of this industry in terms of its importance to individual consumption and importance on national economy, then, to find size and type of obstacles facing the industry in Iraq. Relationship was measured through use of quantitative methods and digital data in the comparison process. Results showed that the large growth in the size of the population in Iraq is not the first multiplier in the high consumption of processed food, but the increase in the per-capita income. The treatment takes several aspects related to the gene
... Show MoreSegmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show More