Grass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents a fuzzy model for predicting the effects of noise pollution on human work efficiency as a function of noise level, exposure time and age of the operators.
In this work ,medical zinc oxide was produced from zinc scraps instead of traditional method which used for medical applications such as skin diseases, Iraq is importing around 50 ton/year for samarra plant the producted powder has apartical size less than 5 micron and the purity was more than 99.98%,also apilot plant of yield capacitiy 15 kg/8hours wsa designed and manufactured .
Before the start of delivery, any membranes rupture could be named as a premature rupture of membranes (PROM), which may need special obstetrical interactions to minimize perinatal complications, it is important topromptly diagnose PROM, the method used should be accurate, cheap, simple, and widely available. This was exactly the idea behind this study to use an ordinary pregnancy test kit aiming to confirm presence of PROM.Over a 6 months’ period, 60 pregnant women with a history of leaking liquor and a positive speculum examination for amniotic fluid pooling were collected prospectively and compared with other 60 women (control group) with uneventful pregnancy. Majority of patients with positive leaking liquor signs and symptoms had a p
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show More