Preferred Language
Articles
/
gBb4j4oBVTCNdQwCLZ_t
Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography
...Show More Authors

The control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voice and EMG control systems. Furthermore, the designed control system might serve a large number of amputees with different amputation levels, and since it has a reasonable cost and be easy to use. The performance of the proposed control system, based on hybrid strategies, was tested by intact-limbed and amputee participants for controlling the HANDi hand. The results showed that the proposed hybrid control system was robust, feasible, with an accuracy of 94%, 98%, and 99% for Strategies 1, 2, and 3, respectively. It was possible to specify the grip force applied to the prosthetic hand within three gripping forces. The amputees participated in this study preferred combination Strategy 3 where the voice and EMG are working concurrently, with an accuracy of 99%.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Potentiometric Transducers for the Selective Recognition of Risperidone Based on Molecularly Imprinted Polymer
...Show More Authors

          Graphite Coated Electrodes (GCE) based on molecularly imprinted polymers were fabricated for the selective potentiometric determination of Risperidone (Ris). The molecularly imprinted (MIP) and nonimprinted (NIP) polymers were synthesized by bulk polymerization using (Ris.) as a template, acrylic acid (AA) and acrylamide (AAm) as monomers, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The imprinted membranes and the non-imprinted membranes were prepared using dioctyl phthalate (DOP) and Dibutylphthalate (DBP) as plasticizers in PVC matrix. The membranes were coated on graphite electrodes. The MIP electrodes using

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jul 01 2013
Journal Name
2013 35th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis
...Show More Authors

View Publication
Scopus (37)
Crossref (25)
Scopus Crossref
Publication Date
Sun Aug 06 2023
Journal Name
Journal Of Economics And Administrative Sciences
Probit and Improved Probit Transform-Based Kernel Estimator for Copula Density
...Show More Authors

Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The

... Show More
Publication Date
Thu May 23 2019
Journal Name
The International Journal Of Artificial Organs
Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study
...Show More Authors

In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Aug 25 2021
Journal Name
Caai Transactions On Intelligence Technology
Shoulder girdle recognition using electrophysiological and low frequency anatomical contraction signals for prosthesis control
...Show More Authors

View Publication Preview PDF
Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
Hybrid Methodology for Image Segmentation Based on Active Contour Module and Alpha-Shape Theory
...Show More Authors

The concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s

... Show More
Publication Date
Tue Feb 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Finger Vein Recognition Based on PCA and Fusion Convolutional Neural Network
...Show More Authors

Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network

... Show More
Publication Date
Fri Mar 12 2021
Journal Name
Sensors
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a

... Show More
View Publication
Scopus (34)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref