Preferred Language
Articles
/
gBb4j4oBVTCNdQwCLZ_t
Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography

The control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voice and EMG control systems. Furthermore, the designed control system might serve a large number of amputees with different amputation levels, and since it has a reasonable cost and be easy to use. The performance of the proposed control system, based on hybrid strategies, was tested by intact-limbed and amputee participants for controlling the HANDi hand. The results showed that the proposed hybrid control system was robust, feasible, with an accuracy of 94%, 98%, and 99% for Strategies 1, 2, and 3, respectively. It was possible to specify the grip force applied to the prosthetic hand within three gripping forces. The amputees participated in this study preferred combination Strategy 3 where the voice and EMG are working concurrently, with an accuracy of 99%.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Apr 15 2016
Journal Name
International Journal Of Computer Applications
Hybrid Techniques based Speech Recognition

Information processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (

... Show More
Crossref
View Publication
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
A Design of a Hybrid Algorithm for Optical Character Recognition of Online Hand-Written Arabic Alphabets

     The growing relevance of printed and digitalized hand-written characters has necessitated the need for convalescent automatic recognition of characters in Optical Character Recognition (OCR). Among the handwritten characters, Arabic is one of those with special attention due to its distinctive nature, and the inherent challenges in its recognition systems. This distinctiveness of Arabic characters, with the difference in personal writing styles and proficiency, are complicating the effectiveness of its online handwritten recognition systems. This research, based on limitations and scope of previous related studies, studied the recognition of Arabic isolated characters through the identification o

... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Design of Efficient Algorithm for Face Recognition Based on Hybrid PCA-Wavelet Transform

In modern times face recognition is one of the vital sides for computer vision. This is due to many reasons involving availability and accessibility of technologies and commercial applications. Face recognition in a brief statement is robotically recognizing a person from an image or video frame. In this paper, an efficient face recognition algorithm is proposed based on the benefit of wavelet decomposition to extract the most important and distractive features for the face and Eigen face method to classify faces according to the minimum distance with feature vectors. Faces94 data base is used to test the method. An excellent recognition with minimum computation time is obtained with accuracy reaches to 100% and recognition time decrease

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Biomedical Signal Processing And Control
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Wed Jul 01 2020
Journal Name
2020 42nd Annual International Conference Of The Ieee Engineering In Medicine & Biology Society (embc)
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Oct 01 2017
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
Scopus (107)
Crossref (108)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Design of an Efficient Face Recognition Algorithm based on Hybrid Method of Eigen Faces and Gabor Filter

Face recognition is one of the most applications interesting in computer vision and pattern recognition fields. This is for many reasons; the most important of them are the availability and easy access by sensors. Face recognition system can be a sub-system of many applications. In this paper, an efficient face recognition algorithm is proposed based on the accuracy of Gabor filter for feature extraction and computing the Eigen faces. In this work, efficient compressed feature vector approach is proposed. This compression for feature vector gives a good recognition rate reaches to 100% and reduced the complexity of computing Eigen faces. Faces94 data base was used to test method.

View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Education For Pure Science- University Of Thi-qar
Dorsal Hand Vein Image Recognition: A Review

Subcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and

... Show More