Preferred Language
Articles
/
mRb8j4oBVTCNdQwCQZ_c
Recurrent Fusion of Time-Domain Descriptors Improves EMG-based Hand Movement Recognition
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2016
Journal Name
2016 Ieee Symposium Series On Computational Intelligence (ssci)
A fusion of time-domain descriptors for improved myoelectric hand control
...Show More Authors

View Publication
Scopus (33)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Selecting the optimal movement subset with different pattern recognition based EMG control algorithms
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Expert Systems With Applications
A long short-term recurrent spatial-temporal fusion for myoelectric pattern recognition
...Show More Authors

View Publication
Scopus (17)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Ieee Transactions On Neural Systems And Rehabilitation Engineering
A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition
...Show More Authors

View Publication
Scopus (107)
Crossref (108)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Ieee Transactions On Artificial Intelligence
Recursive Multi-Signal Temporal Fusions With Attention Mechanism Improves EMG Feature Extraction
...Show More Authors

View Publication
Scopus (22)
Crossref (19)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Finger Vein Recognition Based on PCA and Fusion Convolutional Neural Network
...Show More Authors

Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network

... Show More
Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Spin-Image Descriptors for Text-Independent Speaker Recognition
...Show More Authors

Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
2016 38th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction
...Show More Authors

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
View Publication
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhanced Prosthesis Control Through Improved Shoulder Girdle Motion Recognition Using Time-Dependent Power Spectrum Descriptors and Long Short-Term Memory
...Show More Authors

Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref