This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.
A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreThe researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through r
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreIn this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two
... Show MoreThis work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreOur goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
In this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.