This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
Transport is a problem and one of the most important mathematical methods that help in making the right decision for the transfer of goods from sources of supply to demand centers and the lowest possible costs, In this research, the mathematical model of the three-dimensional transport problem in which the transport of goods is not homogeneous was constructed. The simplex programming method was used to solve the problem of transporting the three food products (rice, oil, paste) from warehouses to the student areas in Baghdad, This model proved its efficiency in reducing the total transport costs of the three products. After the model was solved in (Winqsb) program, the results showed that the total cost of transportation is (269,
... Show MoreIn this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
Many of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence
The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.
An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show More: In this study, a linear synchronous machine is compared with a linear transverse flux machine. Both machines have been designed and built with the intention of being used as the power take off in a free piston engine. As both topologies are cylindrical, it is not possible to construct either using just flat laminations and so alternative methods are described and demonstrated. Despite the difference in topology and specification, the machines are compared on a common base in terms of rated force and suitability for use as a generator. Experience gained during the manufacture of two prototypes is described.
This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.