The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density function are calculated. According to quadratic model, the capacity factor for five wind turbines of different characteristics is calculated and compared with wind turbines in wind farm. The suitable wind turbine for the candidate sites is selected via matching between wind sites-wind turbines characteristics. The Gamesa G114-2.0MW model has highest capacity factor among other models for all selected sites whereas the Adwen AD 5-132 has lowest capacity factor. The Genetic algorithm is used to find the optimum cut-in and rated speeds of the wind turbine. The main objective of the algorithm to be maximized is the capacity factor of wind turbine. According to the practical ranges for cut-in and rated speeds of wind turbines, a proposed optimal value of cut-in and rated speeds are identified to ensure highest capacity factor for the studied wind sites in Iraq. MATLAB program is used to simulate the mathematical model of wind energy, wind turbine performance, and the capacity factor of wind turbines.
This research is carried out to study the effect of the external post-tensioning technique on the flexural capacity of simply supported composite castellated beam experimentally. In this research, seven composite castellated beams having the same dimensions and material properties were cast and tested up to failure by applied two concentrated loads at 700 mm from each end. Two external strands of 12.7 mm diameter were fixed at each side of the web of strengthening beams and located at depth 180 mm from top fiber of the section (dps) at each end of the beam. The strands have been tensioned by using a hydraulic jack with a constant stress of 100 MPa. This research aims to study the effect of the strengthening by different shapes of st
... Show MoreModern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented. The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.
... Show MoreAccurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters
... Show MoreThis paper presents the first data for bremsstrahlung buildup factor (BBUF) produced by the complete absorption of Y-91 beta particles in different materials via the Monte Carlo simulation method. The bremsstrahlung buildup factors were computed for different thicknesses of water, concrete, aluminum, tin and lead. A single relation between the bremsstrahlung buildup factor BBUF with both the atomic number Z and thickness X of the shielding material has been suggested.
Based on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show MoreA few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreBackground: Diabetes mellitus and osteoporosis are two common medical disorders that are becoming more common as the population ages. T2DM patients have a higher fracture hazard, having a high BMD, which is primarily due to the raise hazard of falling. Macrophage colony-stimulating factor (M-CSF) is one of the hematopoietic growth factor family, and It plays an important function in fracture repair by attracting stem cells to the fracture site and influencing the production of hard calluses by promoting osteoclast genesis.Aims of study: The purpose of this research was to assess the blood level of macrophage colony-stimulating factor in Iraqi osteoporotic patients with and without type 2 diabetes. in addition, that M-CSF may be a predictiv
... Show More