Preferred Language
Articles
/
fBc2y48BVTCNdQwCO33G
Artificial Intelligence Technology in the Field of Modern Forensic Evidence: Brain Fingerprinting as a Model
...Show More Authors

Brain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining the signals emanating from a person’s brain, which are called p300. The BF test does not prove guilt or innocence, but rather it provides information regarding what is stored in a person’s memory about the crime, and the judge can use this information when ruling the case.

View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
A reliable numerical simulation technique for solving COVID-19 model
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Design a supply chain model for Baghdad Soft Drinks Company
...Show More Authors

In this paper, a mathematical model was built for the supply chain to reduce production, inventory, and transportation in Baghdad Company for Soft Drink. The linear programming method was used to solve this mathematical model. We reduced the cost of production by reduced the daily work hours, the company do not need the overtime hours to work at the same levels of production, and the costs of storage in the company's warehouses and agents' stores have been reduced by making use of the stock correctly, which guarantees reducing costs and preserving products from damage. The units transferred from the company were equal to the units demanded by the agents. The company's mathematical model also achieved profits by (84,663,769) by re

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Phase Behavior Compositional Model for Jambour Cretaceous Oil Reservoir
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Determine the best model to predict the consumption of electric energy in the southern region
...Show More Authors

Abstract:          

                Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.

  

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 29 2026
Journal Name
Journal Of Baghdad College Of Dentistry
Biomechanical evaluation of porous titanium implants (CpTi) fabricated by powder technology
...Show More Authors

Background: It may be an important prospective clinical use of manufacturing of porous implant for clinical situations, such as cases of limitation in bone height, low bone density .The small segment of porous implant an effective osseointegration allows increasing in contact area provided for small segmented porous provided by its surface configuration. This study was done to Fabricate porous titanium implants by powder technology, as well as the observation of removal torque values of porous titanium implants compared to smooth titanium implants. Materials and methods: Twenty porous titanium implants (3.2mm in diameter and 8mm in length) were manufactured by powder technology using commercially pure titanium powder of ≤75um part

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Communications And Network
Link and Cost Optimization of FTTH Network Implementation through GPON Technology
...Show More Authors

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Development of carbon nanotubes catalyst supported for alkaline fuel cell technology
...Show More Authors
Abstract<p>Study of the development of an activated carbon nanotube catalyst for alkaline fuel cell technology. Through the prepared carbon nanotubes catalyst by an electrochemical deposition technique. Different analytical approaches such as X-ray diffraction (XRD) to determine the structural properties and Scanning Electron Microscope (SEM), were used to characterize, Mesh stainless steel catalyst substrate had an envelope structure and a large surface area. Voltages were also obtained at 1.83 V and current at 3.2 A of alkaline fuel cell. In addition, study the characterization of the electrochemical parameters.</p>
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Nov 05 2019
Journal Name
Cardiff University
Technology development for nanoscale InSb quantum split-gate structures
...Show More Authors

Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Application of artificial neural network to predict slug liquid holdup
...Show More Authors

Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF