Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision based on the fusion of probabilities. Individually, the classifier based on PI achieved 93.1% accuracy, whereas the deep classifiers reached classification accuracies over 90% only in isolated cases. Overall, the average accuracy of the deep networks over the four corneal maps ranged from 86% (SfN) to 89.9% (AN). The classifier ensemble increased the accuracy of the deep classifiers based on corneal maps to values ranging (92.2% to 93.1%) for SqN and (93.1% to 94.8%) for AN. Including in the ensemble-specific combinations of corneal maps’ classifiers and PI increased the accuracy to 98.3%. Moreover, visualization of first learner filters in the networks and Grad-CAMs confirmed that the networks had learned relevant clinical features. This study shows the potential of creating ensembles of deep classifiers fine-tuned with a transfer learning strategy as it resulted in an improved accuracy while showing learnable filters and Grad-CAMs that agree with clinical knowledge. This is a step further towards the potential clinical deployment of an improved computer-assisted diagnosis system for KCN detection to help ophthalmologists to confirm the clinical decision and to perform fast and accurate KCN treatment.
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The aim of this study to identity using Daniel's model and Driver’s model in learning a kinetic chain on the uneven bars in the artistic gymnastics for female students. The researchers used the experimental method to design equivalent groups with a preand post-test, and the research community was identified with the students of the third stage in the college for the academic year 2020-2021 .The subject was, (3) class were randomly selected, so (30) students distributed into (3) groups). has been conducted pretesting after implementation of the curriculum for (4) weeks and used the statistical bag of social sciences(SPSS)to process the results of the research and a set of conclusions was reached, the most important of which is t
... Show Moreهدفت الدراسة الى الاهتمام واستغلال ماهو جديد من تقنيات واجهزة حديثة في تعليم السباحة الحرة عن طريق توجيه الاطفال على تطوير مداركهم واستيعابهم بالتطور التكنولوجي الذي يتناوله العالم ،قامت الباحثتان باعداد منهج تعليمي باستخدام نظارة الواقع الافتراضي وذالك بتوفير بيئة مشابهة للبيئة الحقيقية تحاكي مدارك عقول الاطفال في عالم افتراضي لتتكون صورة كاملة عن مهارات السباحة الحرة ،ومن هنا اتت المشكلة نتيجة تعل
... Show MoreA microbial study conducted for a number of flour samples (30 samples) Uses in the bakery ovens in various areas of the city of Baghdad, by used the conventional methods used in laboratories in microbial tests and compared with the modern techniqueby usedof BacTrac Device 3400 equipped from SY-LAB Impedance analysersAustrian company.The results of two ways showed (The conventional way and BacTrac Device test)that the total counts of aerobic bacteria, coliform bacteria, StaphylococcusSpp. bacteria, Bacillus cereus bacteria and yeasts and molds,Most of them were within the permissible borders in the Iraqi standard for grain and its products With free samples from SalmonellaSpp. bacteria, and that the screening by BacTrac device are shorten
... Show MoreData of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
This study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show More