The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
The operating characteristics of optoelectronic devices depend critically on the properties physical of the constituent materials, interesting compound has been focused on this research formed from group III and V of the periodic table. Thin film n-InSb heterjuntion were successfully fabricated on p-Si substrates by thermal evaporation technique at different annealing temperature (as prepared, 400,500,600) °C. The effect of annealing temperature on the structural, surface morphology, optical and optoelectronic properties of InSb films were investigated and studied. The crystal structure of the film was characterized by X-ray diffraction and techniques. AFM techniques inspect the surface morphology of InSb films, the study presented the val
... Show MorePorous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use
... Show MoreIn this work, the characterization and application of thin films composite incorporated titanium dioxide (TiO2) (0.8)% volume ratio for (Rutile) nanostructure with poly [2- methoxy-5-(2’-ethylhexoxy-p-phenylene vinylene] (MEH-PPV) were deposited by a spin-coating technique. The optical properties for deposited (MEH-PPV/TiO2) nanocomposite thin films have two peaks which are the Q-band in the visible region and B-band in ultraviolet. This study shows that the absorption spectrum of organic polymer mixing with TiO2 increased with increasing the volume ratios TiO2. The I-V characteristic of nanocomposite thin films shows that the current at dark and light condition
... Show MoreBismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray p
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show MoreThis study suggests using the recycled plastic waste to prepare the polymer matrix composite (PMCs) to use in different applications. Composite materials were prepared by mixing the polyester resin (UP) with plastic waste, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with varies weight fractions (0, 5, 10, 15, 20 and 25 %) added as a filler in flakes form. Charpy impact test was performed on the prepared samples to calculate the values of impact strength (I.S). Flexural and hardness tests were carried out to calculate the values of flexural strength and hardness. Acoustic insulation and optical microscope tests were carried out. In general, it is found that UP/PV
... Show MoreWe manufactured the nanoparticles light emitting diode (NPs-LED) for organic and inorganic semiconductors to achieve electroluminescence (EL). The nanoparticles of Europium oxide(Eu2O3) were incorporated into the thin film layers of the organic compounds, poly(3,4,- ethylene dioxythiophene)/polystyrene sulfonic acid (PEDOT:PSS), N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’- diamine (poly TPD) and polymethyl methacrylate (PMMA), by the spin coating and with the help of the phase segregation method. The EL of NPs-LED, was study for the different bias voltages (20, 25, 30) V at the room temperature, from depending on the CIE 1931 color spaces and it was generated the white light at 20V, t
... Show MoreOily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency
... Show More