In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the spectrogram. In addition, an initialization method is proposed to initialize the parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing environment have shown that the proposed algorithm is effective at separating the mixture with an average signal-to-distortion ratio of 3 dB.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
Background: Schneiderian first rank symptoms are
considered highly valuable in the diagnosis of
schneideria.
They are more evident in the acute phase of the
disorder and fading gradually with time. Many studies
have shown that the rate of these symptoms are
variable in different countries and are colored by
cultural beliefs and values.
Objectives: To find out the rate of Schneiderian first
rank symptoms among newly diagnosed schizophrenic
patients, to assess which symptom(s) might
predominate in those patients, and to find out if there
is/are any correlation(s) between the occurrence of
these symptoms and the sex of the patients.
Methods: Out of twenty-four patients with no past
psychiatric hi
Finding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
In this work, the nano particles of Na-A zeolite were synthesized by sol –gel method. The samples were characterized by X-ray diffraction (XRD), X-ray luorescence (XRF), Surface area and pore volume, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). Results show that the nano A zeolite is with average crystal size is 74.77 nm., Si/Al ratio 1.03, BET surface area was 581.211m2/g and the pore volume for NaA was found equal to 0.355cm3/g.
The pervaporation using a commercial hydrophilic ceramic membrane supplied from PERVATECH was conducted. The dehydration of ethanol/ water system was used as a model for the pervaporation study. Pervaporation experiments of ethanol/water system were carried out in the temperature range of 303-343K, ethanol concentration in the feed 10-90 vol. % and the feed flow rate in the range of 0.5-10 L/min. In this work, the effect of operation parameters on permeates fluxes as well as permeates separation factors have been studied. The Water flux is strongly dependent on the temperature; it increased with increasing in temperature, which in turn decreased the selectivity of membrane to water molecules.
In addition water flux was decr
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreIn this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving averageâ€. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.
Simulation experiments are a means of solving in many fields, and it is the process of designing a model of the real system in order to follow it and identify its behavior through certain models and formulas written according to a repeating software style with a number of iterations. The aim of this study is to build a model that deals with the behavior suffering from the state of (heteroskedasticity) by studying the models (APGARCH & NAGARCH) using (Gaussian) and (Non-Gaussian) distributions for different sample sizes (500,1000,1500,2000) through the stage of time series analysis (identification , estimation, diagnostic checking and prediction). The data was generated using the estimations of the parameters resulting f
... Show MoreIn this research, we make an attempt to derive theoretically 1-D linear dispersion relation of ion-acoustic waves in uniform unmagnetized dusty plasma valid in the long wavelength limits. This equation matched previously special equation of acoustic modes of a general form in magnetized dusty plasma. Depending on previously mentioned experimental data, we numerically consider various parameters that affect the properties of these waves in dusty plasma. The study has shown that the presence of dust grains is to modify the properties of ion acoustic waves and affect the behavior of the plasma in which they are immersed.