Preferred Language
Articles
/
eBb9locBVTCNdQwCvFe5
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregation process. In this paper, we have highlighted the gains of the existing schemes for node clustering based data aggregation along with a detailed discussion on their advantages and issues that may degrade the performance. Also, the boundary issues in each type of clustering technique have been analyzed. Simulation results reveal that the efficacy and validity of these clustering-based data aggregation algorithms are limited to specific sensing situations only, while failing to exhibit adaptive behavior in various other environmental conditions.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Proposed Security Models for Node-level and Network-level Aspects of Wireless Sensor Networks Using Machine Learning Techniques
...Show More Authors

     As a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 17 2012
Journal Name
Eurasip Journal On Wireless Communications And Networking
A cluster-based proxy mobile IPv6 for IP-WSNs
...Show More Authors

View Publication
Scopus (36)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Low Energy Consumption Scheme Based on PEGASIS Protocol in WSNs
...Show More Authors

Wireless Sensor Networks (WSNs) are composed of a collection of rechargeable sensor nodes. Typically, sensor nodes collect and deliver the necessary data in response to a user’s specific request in many application areas such as health, military and domestic purposes. Applying routing protocols for sensor nodes can prolong the lifetime of the network. Power Efficient GAthering in Sensor Information System (PEGASIS) protocol is developed as a chain based protocol that uses a greedy algorithm in selecting one of the nodes as a head node to transmit the data to the base station. The proposed scheme Multi-cluster Power Efficient GAthering in Sensor Information System (MPEGASIS) is developed based on PEGASIS routing protocol in WSN. The aim

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
Efficient Plain Password Cryptanalysis Techniques
...Show More Authors

In this research work, some low complexity and efficient cryptanalysis approaches are proposed to decrypt password (encryption keys). Passwords are still one of the most common means of securing computer systems. Most organizations rely on password authentication systems, and therefore, it is very important for them to enforce their users to have strong passwords. They usually ignore the importance of usability of the password for the users. The more complex they are the more they frustrate users and they end up with some coping strategies such as adding “123” at the end of their passwords or repeating a word to make their passwords longer, which reduces the security of the password, and more importantly there is no scientific basis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Data Mining Techniques for Iraqi Biochemical Dataset Analysis
...Show More Authors

This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Iraqi Journal Of Physics
Study of the Nuclear Structure for 38Ar, 59Co, 124Sn, 146Nd, 153Eu and 203Tl Target Nuclei Used in Fabrication the Nuclear Batteries
...Show More Authors

The nuclear structure of 38Ar, 59Co, 124Sn, 146Nd, 153Eu and 203Tl target nuclei used in technology for nuclear batteries have been investigation, in order that, these nuclei are very interesting for radioisotope thermo-electric generator (RTG) space studies and for betavoltaic battery microelectronic systems. The single particle radial density distribution, the corresponding root mean square radii (rms), neutron skin thicknesses and binding energies have been investigated within the framework of Hartree-Fock Approximation with Skyrme interaction. The bremsstrahlung spectrums produced by absorption of beta particles in betavoltaic process and backscattered p

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A review of Medical Diagnostics Via Data Mining Techniques
...Show More Authors

Data mining is one of the most popular analysis methods in medical research. It involves finding patterns and correlations in previously unknown datasets. Data mining encompasses various areas of biomedical research, including data collection, clinical decision support, illness or safety monitoring, public health, and inquiry research. Health analytics frequently uses computational methods for data mining, such as clustering, classification, and regression. Studies of large numbers of diverse heterogeneous documents, including biological and electronic information, provided extensive material to medical and health studies.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Study of the Nuclear Structure for Some Target Nuclei Used in the Production of Beta-Emitting Radioactive Isotopes for the Fabrication of Nuclear Batteries
...Show More Authors

The nuclear structure of  40Ar, 112Cd, 133Cs, 151Eu, 154Sm, and 226Ra target nuclei used in nuclear battery technology was investigated. These nuclei are widely used for the radioisotope thermo-electric generator space studies and for betavoltaic battery microelectronic systems. For this purpose, some nuclear static properties were calculated. In particular, the single particle radial nuclear density distribution, the corresponding root mean square radii, neutron skin thicknesses, and binding energies were calculated within the framework of Hartree-Fock approximation with Skyrme interaction. The bremsstrahlung spectra produced by the absorption of beta particles throu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study
...Show More Authors

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref