Preferred Language
Articles
/
eBb9locBVTCNdQwCvFe5
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregation process. In this paper, we have highlighted the gains of the existing schemes for node clustering based data aggregation along with a detailed discussion on their advantages and issues that may degrade the performance. Also, the boundary issues in each type of clustering technique have been analyzed. Simulation results reveal that the efficacy and validity of these clustering-based data aggregation algorithms are limited to specific sensing situations only, while failing to exhibit adaptive behavior in various other environmental conditions.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Improve Data Mining Techniques with a High-Performance Cluster
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Oct 08 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Data Analytics and Techniques
...Show More Authors

Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide

... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Proceedings Of The Conference “recent Trends In Engineering Sciences And Sustainability”, Baghdad
GNSS positioning techniques for enhancing Google Earth data quality
...Show More Authors

Due to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study

... Show More
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Comparison of the Combining Methods Used In Space Diversity
...Show More Authors

The basic concept of diversity; where two or more inputs at the receiver are used to get uncorrelated signals. The aim of this paper is an attempt to compare some possible combinations of diversity reception and MLSE detection techniques. Various diversity combining techniques can be distinguished: Equal Gain Combining (EGC), Maximal Ratio Combining (MRC), Selection Combining and Selection Switching Combining (SS).The simulation results shows that the MRC give better performance than the other types of combining (about 1 dB compare with EGC and 2.5~3 dB compare with selection and selection switching combining).

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 08 2022
Journal Name
Multimedia Tools And Applications
Comparison study on the performance of the multi classifiers with hybrid optimal features selection method for medical data diagnosis
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 21 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A comparison between the hierarchical clustering methods for postgraduate students in Iraqi universities for the year 2019-2020 using the cophenetic and delta correlation coefficients
...Show More Authors

The educational sector is one of the important sectors in the world, and it is considered one of the means of community development. In addition, it is one of the means of making the country’s renaissance and devel-opment because it represents the factory of thinking minds that make change. There is no doubt that this sector is the same as any other sector. The deficit in the studied scientific planning has been prolonged, which led to its deterioration, and the problems of education remain diverse and inherited from previous time periods, where the hierarchical cluster analysis was used on postgraduate students in universities in Iraq, except for Kurdistan region, and the number of universities that were included in the study was

... Show More
View Publication
Crossref
Publication Date
Mon Apr 17 2023
Journal Name
Wireless Communications And Mobile Computing
A Double Clustering Approach for Color Image Segmentation
...Show More Authors

One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Apr 26 2019
Journal Name
Journal Of Contemporary Medical Sciences
Breast Cancer Decisive Parameters for Iraqi Women via Data Mining Techniques
...Show More Authors

Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
An Analysis on the Applicability of Meta-Heuristic Searching Techniques for Automated Test Data Generation in Automatic Programming Assessment
...Show More Authors

Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t

... Show More
View Publication Preview PDF
Crossref (2)
Clarivate Crossref