Preferred Language
Articles
/
eBb2j4oBVTCNdQwCD59g
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Partial Encryption for Colored Images Based on Face Detection
...Show More Authors

Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 23 2022
Journal Name
Baghdad Science Journal
Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans
...Show More Authors

In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number   determines the persistence or extinction of the COVID-19. If   , one infected cell will transmit the virus to less than one cell, as a result,  the person carrying the Coronavirus will get rid of the disease .If   the infected cell  will be able to infect  all  cells that contain ACE receptors. The stochastic model proves that if  are sufficiently large then maybe  give  us ultimate disease extinction although ,  and this  facts also proved by computer simulation.

View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
The Egyptian Journal Of Otolaryngology
Incidence and recovery of smell and taste dysfunction in COVID-19 positive patients
...Show More Authors
Abstract<sec> <title>Background

This study aims to find the chemosensitive dysfunction incidence in COVID-19-positive patients and its recovery.

We collected the data from sixty-five patients, all COVID-19 positive, quarantined in-hospital between 5 April 2020 and 17 May 2020, by a questionnaire distributed in the quarantine ward.

Results

Smell dysfunction appeared in 89.23% with or without other symptoms of COVID-19. 39.66% of them recovered the sense of smell. Taste dysfunction found in 83.08% patients with other COVID-19 symptoms. Only 29.63% of them recovered. The recovery took 1–3 weeks, and most

... Show More
View Publication
Scopus (14)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information &amp; Communications Technology Applications (ntict)
An efficient color quantization using color histogram
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref