Preferred Language
Articles
/
eBb2j4oBVTCNdQwCD59g
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Fri Oct 22 2021
Journal Name
Iraqi Journal Of Physics
Absorption properties of novolac-alumina-graphite mixture microwave absorbers in x-band frequencies
...Show More Authors

Absorption properties (Attenuation coefficient, the percentage of the reflection, and the percentage of absorption) in x-band have been investigated in this paper for novolac – alumina- graphite mixture. Using novolac as the host material, the samples are prepared with alumina concentrations (5%,10%,15%,20%) and graphite concentrations (5%,10%) with thickness equal to 2.2mm .Network analyzer produced by HP-8510 was used in this work to measure the attenuation coefficient. The samples (3, 5) have good attenuation of wave with bandwidth of frequencies. The maximum of attenuation is -25dB at frequency 10.28GHZ in sample (3) which has concentrations (80%novolac,10%alumina,and 5% graphite) and -24 dB at frequency 10.56GHZ in sample (5) whic

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 25 2022
Journal Name
Research Journal Of Biotechnology
Evaluation of Interlukein-6 and Vitamin D in Patients with COVID-19
...Show More Authors

COVID-19 is a unique viral infectious illness that causes a variety of symptoms and health hazards, particularly to the respiratory system and has been declared a worldwide pandemic. The disease is characterized by a cytokine release in severe conditions. Interleukin-6 (IL-6), a proinflammatory cytokine, mediates an important immunomodulatory process. Also, vitamin D was identified to have a role in the innate immunity of individuals. Our study was designed to find the role of IL-6 and vitamin D in COVID-19 patients, as well as, to see whether there is a link between vitamin D deficiency and cytokine syndrome development. The study included 90 COVID-19 patients and 30 control people from Baghdad, Iraq. The age of the participants was non-s

... Show More
View Publication
Scopus Crossref
Publication Date
Tue May 02 2023
Journal Name
Social Science Journal
An Investigation of Microstructure Analysis for World Health Organizatioan Speeches during Covid-19 Pandemic: Adopted Van Dijk Theory
...Show More Authors

Publication Date
Sun Jun 30 2013
Journal Name
Al-kindy College Medical Journal
Haemogloin Level, Blood Group, Chest X Ray Findings and Consanguinity in Thalassemic Children in AL Muthana Governorate
...Show More Authors

Background: Thalassemia is characterized by the decrease or absence of the synthesis of one or more globin chains of hemoglobin. Thalassemia is distributed worldwide and is characterized by; regular blood transfusion which is creating alloimmunization to erythrocyte antigens is one of the major complications of regular blood transfusions in thalassemia, particularly in patients who are chronically transfused.Objectives: The aims of this study are to understand the immune system profile as the triggering factor for thalassemia.Methods: Thirty patients aging between one year and four months and twenty two years, twenty two of them were boys and eight were girls. Twenty nine patients, their parents are relative except one and studied in the

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Statistics And Its Interface
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Mechanical Science And Technology
Damage detection in glass/epoxy composite structure using 8–12 GHz X-band
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Applied Energy
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is

... Show More
View Publication
Scopus (23)
Crossref (15)
Scopus Clarivate Crossref