The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be unsatisfactory for deep beams with large web openings. A simplified empirical equation to estimate the shear strength for deep T-beams with large web openings based on the strut-and-tie model was proposed and verified with numerical analysis. The numerical study considered three-dimensional finite element models, in ABAQUS software, that have been developed to simulate and predict the performance of deep beams. The results of numerical simulations were in good agreement and exhibited close correlation with the experimental data. The test results showed that the enlargement in the size of web openings substantially reduces the elements' shear capacity. The experiments revealed that increasing the width of the openings has more effect than the depth at reducing the load-carrying capacity.
Background: In this study we evaluate the effect of plasma treatment (oxygen and argon) gas in two different exposure times on the surface of heat cure and light cure acrylic resin. Materials and method: 100 specimens of heat cure and light cure acrylic resin were fabricated. The measurements of the samples were (75mm, 25mm and 4.5mm) length, width and depth respectively with stopper of 3mm depth. Two types of gas used oxygen and argon in (5,10) min by using (DC-glow discharge plasma device) then we apply cold cure soft lining material, with the help of Instron machine we test the shear stress value. Results: A highly significant effect after argon and oxygen gases treatment in both 5 and 10 min exposure times on shear bond strength to soft
... Show MoreBackground: This study was conducted to assess the effects of various beverages on the shear bond strength of light-cured orthodontic composite used to bond stainless steel orthodontic brackets on human teeth and to determine the site of bonding failure of this material. Materials and Methods: Fifty extracted human premolars were selected and randomly divided into five equal groups each with 10 teeth according to the beverage type (Control, One Tiger, Milk, Green tea and Coffee). After bonding, the teeth were immersed in specific beverages for 5 minutes twice daily with equal intervening intervals then washed and stored in distilled water at 37º C for the reminder of the day. The process was carried out for 30 days. The samples were then
... Show MoreVol. 6, Issue 1 (2025)
The spectroscopic properties, potential energy curve, dipole moments, total charge density, Electrostatic potential as well as the thermodynamic properties of selenium diatomic halides have been studied using code Mopac.7.21 and hyperchem, semi-empirical molecular orbital of MNDO-method (modified neglected of differential overlap) of parameterization PM3 involving quantum mechanical semi-empirical Hamiltonian. The relevant molecular parameters like interatomic distance, bond angle, dihedral angle and net charge were also calculated.
The goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
The research aims to analysis of the current financial crisis in Iraq through knowing its causes and then propose some solutions that help in remedy the crisis and that on the level of expenditures and revenues, and has been relying on the Federal general budget law of the Republic of Iraq for the fiscal year 2016 to obtain the necessary data in respect of the current expenditures and revenues which necessary to achieve the objective of the research , and through the research results has been reached to a set of conclusions which the most important of them that causes of the current financial crisis in Iraq , mainly belonging to increased expenditures and especially the current ones and the lack of revenues , especially non-oil o
... Show MoreWellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show More