Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the formation. This is particularly important in CO2-EOR as it helps to understand reservoir connectivity and optimize CO2 injection. A geomechanical model is also necessary to evaluate the behavior of the reservoir and cap rock. This model can help predict the stress distribution, deformation, and potential failure zones. The Mishrif Formation has five units (from CI to MB-2). Based on the current results, the cap rock units (CI, CII) possess weak mechanical properties. The 1D mechanical earth model highlights different faulting regimes within the Mishrif Formation across various wells;as wells as, different trends of elasticand mechanical properties across the formation units. Some wells exhibit reverse (thrust) type faulting in the reservoir units and normal faulting in the barrier units. Conversely, other wells display strike-slip faulting in the reservoir units and reverse/thrust faulting in the barrier units. Also, the reservoir units exhibited it’s stiffness, brittle strength, it’s endurance to shear force and proved it’s geomechanical stability due to the high values of static young modulus, unconfined compressive strength, bulk modulus and relatively high mechanical properties it's important to note that the in-situ stress has significantly decreased in the barrier units.
The demand on energy sources throughout the world have led to an increase in the production processes of crude oil which is considered to be the main source of energy, without considering the impact on the environment. The objective of this study is to evaluate the environmental impact of drilling processes and crude oil spillage on soil in the Rumaila oil field, Basra, Southern Iraq. An investigation was undertaken to determine the content of Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals in the soil. Ten soil samples were collected near oil wells and analyzed. The results showed a high concentration of PAHsin the soil, particularly (Acenaphthene, Fluorene, Anthracene, Fluoranthene and Pyrene) due to crude oil spillage. The he
... Show MoreDiagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by com
... Show MoreFour subsurface sections and electrical, porosity logs, and gamma-ray logs of the Khasib Formation (age Late Turonian-Lower Coniacian) were studied to identify reservoir characteristics and to evaluate the reservoir properties of the Khasib reservoir units in the East Baghdad oilfield. The lithology of the formation is limestone throughout the whole sequence in all studied wells EB-83, EB-87, EB-92, and EB94. It is bounded conformably from the top by Tanuma Formation and has a conformable lower contact with Kifl Formation. The lower and upper boundaries of the formation were determined using well log analysis, and the formation was divided into three main rock units (Kh1, Kh2, and Kh3), depending on the porosity logs. The porosi
... Show MoreThe Amarah Oil field structure was studied and interpreted by using 2-D seismic data obtained from the Oil Exploration company. The study is concerned with Maysan Group Formation (Kirkuk Group) which is located in southeastern Iraq and belongs to the Tertiary Age. Two reflectors were detected based on synthetic seismograms and well logs (top and bottom Missan Group). Structural maps were derived from seismic reflection interpretations to obtain the location and direction of the sedimentary basin. Two-way time and depth maps were conducted depending on the structural interpretation of the picked reflectors to show several structural features. These included three types of closures, namely two anticlines extended in the directions of
... Show MoreA comparison was conducted between two wells, Kt-1and Kt-2, in Kumait and two wells, Du-1and Du-2, in Dujaila oil fields that belong to Mishrif formation, southern Iraq. Seismic inversion method was employed to detect oil and water reservoirs. The comparison included the behavior of acoustic impedance (AI) of fluids and the lithology with related petrophysical properties. The values of water saturation, Shale volume (Vsh), and effective porosity were compared between the AI, two fluid reservoirs. It was found that the AI value for the oil reservoir unit is relatively low to medium, whereas it was relatively medium for the water reservoir. Effective porosity value showed, in general, an increase in the oil reservoir and
... Show MoreThe study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show MoreThe seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interp
... Show MoreIMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Acidizing is one of the most used stimulation techniques in the petroleum industry. Several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly in the development of the Mishrif reservoir, including the following: (1) high injection pressures make it difficult to inject acid into the reservoir formation, and (2) only a few acid jobs have been effective in Ahdeb oil wells, while the bulk of the others has been unsuccessful. The significant failure rate of oil well stimulation in this deposit necessitates more investigations. Thus, we carried out this experimental study to systematically investigate the influence of acid treatment on the geomechanical properties of Mi4
... Show More