Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the formation. This is particularly important in CO2-EOR as it helps to understand reservoir connectivity and optimize CO2 injection. A geomechanical model is also necessary to evaluate the behavior of the reservoir and cap rock. This model can help predict the stress distribution, deformation, and potential failure zones. The Mishrif Formation has five units (from CI to MB-2). Based on the current results, the cap rock units (CI, CII) possess weak mechanical properties. The 1D mechanical earth model highlights different faulting regimes within the Mishrif Formation across various wells;as wells as, different trends of elasticand mechanical properties across the formation units. Some wells exhibit reverse (thrust) type faulting in the reservoir units and normal faulting in the barrier units. Conversely, other wells display strike-slip faulting in the reservoir units and reverse/thrust faulting in the barrier units. Also, the reservoir units exhibited it’s stiffness, brittle strength, it’s endurance to shear force and proved it’s geomechanical stability due to the high values of static young modulus, unconfined compressive strength, bulk modulus and relatively high mechanical properties it's important to note that the in-situ stress has significantly decreased in the barrier units.
Three seismic instantaneous attributes (phase, frequency, and variance) were utilized on 3D-seismic poststack migrated data, covering 617.31 km2, integrated with data of two wells (Du-1 and Du-2) in Dujaila oil field, southeast of Iraq. They gave good results in detecting reef buildups and confirmed the existence of the stratigraphic hydrocarbon trap that was not obvious in the conventional seismic amplitude sections. They display several seismic criteria in attribute sections for recognizing reef buildups and hydrocarbon accumulation, such as phase reversal, low frequency, and high amplitude variance. The seismic attributes emphasized that the stratigraphic trap of reef rudist buildups with hydrocarbon content is con
... Show MoreThis research deals with the study of the types and distribution of petrographic microfacies and Paleoenvironments of Mishrif Formation in Halfaya oil field, to define specific sedimentary environments. These environments were identified by microscopic examination of 35 thin sections of cutting samples for well HF-9H as well as 150 thin sections of core and cutting samples for well HF-I. Depending on log interpretation of wells HF-1, HF-316, HF-109, IIF-115, and IIF-272, the sedimentary facies were traced vertically through the use of various logs by Petrel 2013 software in addition to previous studies. Microfacies analysis showed the occurrence of six main Paleoenvironments within Mishrif succession, represented
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MoreThe regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the ful
... Show MoreA 3D geological model for Mishrif Reservoir in Nasiriyah oil field had been invented "designed" "built". Twenty Five wells namely have been selected lying in Nasiriyah Governorate in order to build Structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three directions .Structural model showed that Nasiriyah oil field represents anticlinal fold its length about 30 km and the width about 10 km, its axis extends toward NW–SE with structural closure about 65 km . After making zones for Mishrif reservoir, which was divided into 5 zones i.e. (MA zone, UmB 1zone,MmB1 zone ,L.mB1 zone and mB2zone) .Layers were built for each zone depending on petrophysical propertie
... Show MoreThe reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese
... Show MoreReservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two sec
... Show MoreThis study is achieved in the local area in Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group a carbonate succession and widespread throughout the Arabian Plate. There are four association facies are identified in Mishrif Formation according the microfacies analysis: FA1-Deep shelf facies association (Outer Ramp); FA2-Slope (Middle Ramp); FA3-Reef facies (Shoal) association (Inner ramp); FA4-Back Reef facies association. Sequence stratigraphic analysis show there are three stratigraphic surfaces based on the abrupt changing in depositional
... Show MoreThe Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petroph
... Show More