Wellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modified Lade, and Mogi–Coulomb, were used to predict a safe mud weight window. The geomechanical model was constructed using offset well log data, including formation micro-imager (FMI) logs, acoustic compressional wave, shear wave, gamma ray, bulk density, sonic porosity, and drilling events. The model was calibrated using image data interpretation, modular formation dynamics tester (MDT), leak-off test (LOT), and formation integrity test (FIT). Furthermore, a comparison between the predicted wellbore instability and the actual wellbore failure was performed to examine the model's accuracy. The results showed that the Mogi–Coulomb failure and modified Lade criterion were the most suitable for the Zubair formation. These criteria were given a good match with field observations. In contrast, the Mohr–Coulomb criterion was improper because it does not match shear failure from the caliper log. In addition, the obtained results showed that the inappropriate mud weight (10.6 ppg) was the main cause behind wellbore instability problems in this formation. The optimum mud weight window should apply in Zubair shale formation ranges from 11.5 to 14 ppg. Moreover, the inclination angle should be less than 25 degrees, and azimuth ranges from 115 to 120 degrees northwest-southeast (NE–SW) can be presented a less risk. The well azimuth of NE–SW direction, parallel to minimum horizontal stress (Shmin), will provide the best stability for drilling the Zubair shale formation. This study's findings can help understand the root causes of wellbore instability in the Zubair shale formation. Thus, the results of this research can be applied as expenditure effectiveness tools when designing for future neighboring directional wells to get high drilling performance by reducing the nonproductive time and well expenses.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreZubair oilfield is an efficient contributor to the total Iraqi produced hydrocarbon. Drilling vertical wells as well as deviated and horizontal wells have been experiencing intractable challenges. Investigation of well data showed that the wellbore instability issues were the major challenges to drill in Zubair oilfield. These experienced borehole instability problems are attributed to the increase in the nonproductive time (NPT). This study can assist in managing an investment-drilling plan with less nonproductive time and more efficient well designing.
To achieve the study objectives, a one dimension geomechanical model (1D MEM) was constructed based on open hole log measurements, including Gamma-
... Show MoreRock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show MoreThe Nahr Umr Formation is considered one of the main reservoirs produced in southern Iraq. It is one of the important siliciclastic deposits of the Cretaceous sequence of Iraq oilfields. Zubair oil fields ZB-190 and ZB-047 were chosen to study areas. This study depends on the available core and cutting samples to determine the facies analysis, depositional environments, petrographic characteristics and diagenesis processes. Based on the description of the core and the borehole, six types of facies were distinguished in the Nahr Umr Formation, resulting in an intercalated sandstone and shale with a thin layer of siltstone. The petrographic study of the clastic part of the Nahr Umr Formation showed that the sandstone is composed m
... Show MoreThe Barremain-Aptian succession represented by two types of deposits, Clasits deposits of Zubair Formation. This formation is the most significant sandstone reservoir in Iraq, Deposited in fluvio- deltaic, deltaic and marine environments during the Barremain to Early Aptian age.
The area of study is located in the Mesopotamian Zone at S
The Barremain-Aptian succession represented by the Clasits deposits of Zubair Formation. This formation is the most significant sandstone reservoir in Iraq which deposited in fluvio- deltaic, deltaic and marine environments during the Barremain to Early Aptian age. The area of study is located in the Mesopotamian Zone at Southern part of Iraq which represented by five oil fields (Nasira, L
... Show MoreAn interpretive (structural and stratigraphic) study of the two,-dimensional seismic, data of East Nasiriya area (30 km to the south east of Nasiriya oil field within Thi-Qar province, southeastern Iraq) was carried out using Petrel 2017 program. The study area has an importance due to its location between many oil fields, but still without exploration of oil wells. Twenty five seismic lines were used, date back to different types of seismic surveys conducted in the region at different time periods. Also, the seismic velocity surveys of the nearest wells to oil fields, such as Nasiriya-1 and Subba-8, in addition to their sonic and density logs were used. A synthetic seismogram with a good matching with the seismic section was achie
... Show More