Preferred Language
Articles
/
dBbeFooBVTCNdQwC6ZCt
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Engineering
Short Term Deflection of Ordinary, Partially Prestressed and CFRP Bars Reinforced Concrete Beams
...Show More Authors

Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
...Show More Authors

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Results In Physics
An efficient iterative method for solving the Fokker–Planck equation
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Fri Mar 18 2016
Journal Name
International Journal Of Basic And Applied Sciences
Analytic and numerical solution for duffing equations
...Show More Authors

<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>

View Publication
Crossref (17)
Crossref
Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Distribution of Land Surface Temperatures from Satellite Images for Al-Hammar Marshes In Iraq
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Differential evolution detection models for SMS spam
...Show More Authors

With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Computer Systems Science & Engineering
Parameters' fine tuning of differential evolution algorithm
...Show More Authors

Most heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of par

... Show More
Scopus (7)
Scopus
Publication Date
Wed Jan 10 2018
Journal Name
International Journal Of Science And Research (ijsr)
Results for Fuzzy Casual Stringy Differential Dissimilarity
...Show More Authors

Publication Date
Thu Jun 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A PARTICULAR SOLUTION OF THE TWO AND THREE DIMENSIONAL TRANSIENT DIFFUSION EQUATIONS
...Show More Authors

A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)

View Publication Preview PDF