Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum number of triple-completed wells with a gas-injection completion in the vertical section of the well, and two horizontal well sections—the upper section for producing oil (from above the oil/water contact) and the lower section for draining water below the oil/water contact. The three well completions are isolated with hydraulic packers and water is drained from below the oil–water contact using the electric submersible pump. Well placement is optimized using the particle swarm optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year oil recovery with a minimum volume of produced water. The best well placement was found by considering hundreds of possible well locations throughout the reservoir for the single-well and two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of 55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be more productive by reducing the number of wells and increasing recovery with less water production.
One of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreIn the present study, we have reported investigations on the effect of simultaneous substitution of Tl at the Hg site in the oxygen deficient HgOδ layer of Hg1-xTlxBa2Ca2Cu3O8+ δ cuprate superconductor. Bulk polycrystalline samples were prepared by the two-step solid state reaction process. It was observed that the grown Hg1-xTlxBa2Ca2Cu3O8+ δ corresponds to the 1223 phase. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. The highest Tc(0ffset) were 108, 102,113, 118, 125 and 121K for Hg1xTlxBa2Ca2Cu3O8+ δ with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 respectively. The optimum Tc(off) of ~ 125 K and Tc(onset) ~ 136K was fo
... Show MoreA nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the
... Show MoreIn this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies
... Show MoreBackground: In the traditional protocol, the patient should wait after extraction up to six months to place the dental implant in healed bone, this waiting time accompanied by varying degrees of alveolar bone changes. In order to overcome these problems, immediate implant placement in the fresh extraction socket was introduced. The Aim of this study was to evaluate the outcome of the immediate implant placement utilizing Resonance Frequency Analysis (RFA) to quantify implant stability and osseointegration. Materials and Methods: A total of (23) patients participated in the study, receiving (44) implants placed in the sockets of teeth indicated for extraction. Clinical and radiographic preoperative assessment was accomplished for each patie
... Show MoreThe present study was conducted to evaluate the effect of variation of influent raw water turbidity, bed composition, and filtration rate on the performance of mono (sand) and dual media (sand and anthracite) rapid gravity filters in response to the effluent filtered water turbidity and headloss development. In order to evaluate each filter pe1formance, sieve analysis was made to characterize both media and to determine the effective size and uniformity coefficient. Effluent filtered water turbidity and the headloss development was recorded with time during each experiment.
Tungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition metho
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show MoreBackground: the oral cavity is consider to be an open ecosystem, with the balance between the microorganism’s entrance and the defenses of the host. The initiation of periodontitis has been associated with restricted kinds of anaerobic bacteria, such as Aggregatibacter actinomycetemcomitans (A.a) and Porphyromonas gingivalis (P.g) in plaque subgingivally. Ozone has a biological effects on bacteria due to oxidation of bio-molecules and its toxins. The aim is to determine and compare the antimicrobial effect of gaseous ozone and ozonized water on the growth of isolated anaerobic bacteria (A.a and P.g) when exposed to different time intervals. Materials and methods:This experiment is done byozone generator OLYMPIC- III(600mg/hr) to gene
... Show More