Preferred Language
Articles
/
d4Yv1YYBIXToZYALmrX1
Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification
...Show More Authors

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melting and solidification modes. It is found that the melting rate is about 8% faster, and the average temperature is 4 K higher in the corrugated region compared with the smooth region because of the large heat-exchange surface area, which facilitates higher rates of heat transfer into the PCM channel. In addition to the higher performance, a more compact unit can be achieved using the corrugated system. Moreover, applying the half-width PCM channel accelerates the melting rate by eight times compared to the double-width channel. Meanwhile, applying thicker channels provides faster solidification rates. The melting rate is proportional to the airflow temperature. The PCM melts within 274 s when the airflow temperature is 328 K. However, the melting time increases to 460 s for the airflow temperature of 308 K. Moreover, the PCM solidifies in 250 s and 405 s in the cases of 318 K and 328 K airflow temperatures, respectively.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Sep 02 2017
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

This article introduces a numerical study on heat exchange and corrosion coefficients of Zinc–water nanofluid stream in a circular tube fitted with swirl generator utilizing CFD emulation. Different  forms of swirl generator which have the following properties of plain twisted tape (PTT) and baffle wings twisted tape (BTT) embeds with various ratio of twisting (y = 2.93, 3.91 and 4.89), baffle inclination angles (β = 0°, - 30° and 30) joined with 1%, 1.5% and 2% volume fraction of ZnO nanofluid were utilized for simulation. The results demonstrated that the heat and friction coefficients conducted by these two forms of vortex generator raised with Reynolds number, twist ratio and baffle inclination angles decreases. Likewise, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Effect of Oscillatory Motion in Enhancing the Natural Convection Heat Transfer from a Vertical Channel
...Show More Authors

This paper reports an experimental study regarding the influence of vertical oscillations on the natural convection heat transfer from a vertical channel. An experimental set-up was constructed and calibrated; the vertical channel was tested in atmosphere at 25o
C. The channel-to-ambient temperature difference was varied with the power supply to the electrical heater ranging between
15W to 70W divided into five levels. Data sets were measured under different operating condition from a test rig under six vibrating velocities (VVs) levels ranging from (5-30 m/s) in addition to the stationary state. The results show that the maximum heat transfer enhancement factor (E) occurs at Rayleigh number (Ra=2.328×103 ) and vibrational Reynol

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 02 2022
Journal Name
Frontiers In Built Environment
Thermal analysis of horizontal earth-air heat exchangers in a subtropical climate: An experimental study
...Show More Authors

The earth-air heat exchanger (EHX) has a promising potential to passively save the energy consumption of traditional air conditioning systems while maintaining a high degree of indoor comfort. The use of EHX systems for air conditioning in commercial and industrial settings offers several environmental benefits and is capable of operating in both standalone and hybrid modes. This study tests the performance and effectiveness of an EHX design in a sandy soil area in Baghdad, Iraq. The area has a climate of the subtropical semi-humid type. Ambient air temperatures and soil temperatures were recorded throughout the months of 2021. During the months of January and June, the temperatures of the inlet and outflow air at varying air veloci

... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
The Egyptian-Ethiopian Relations after the Change
...Show More Authors

Egypt and Ethiopia have connected in a strong relation as there are historical facts that
deepen these relations, one of these is Egypt's cooperation in establishing the first economic
and financial banking system in Ethiopia.
Beside the religious relation between The Egyptian and Ethiopian churches the Nile River is
considered one of the effective connections
That strong then the relations as it leads to some tension between the two countries because
Ethiopia believes that Egypt seeks to control the river tries to build its project over the Blue
Nile means a threat to the Ethiopian national security.
The tension continues even after the revolution of 25th of January 2011because the Nahda
dam which is a clear t

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Nanoparticles and Surfactant on Phase Inversion of Two Phases
...Show More Authors

In the present study, a pressure drop technique was used to identify the phase inversion point of oil-in-water to water-in-oil flows through a horizontal pipe and to study the effect of additives (nanoparticles, cationic surfactant and blend  nanoparticles-surfactant) on the critical dispersed volume fraction (phase inversion point). The measurements were carried  for mixture velocity ranges from 0.8 m/sec to 2.3 m/sec. The results showed that at low mixture velocity 0.8 and 1 m/sec there is no effect of additives and velocity on phase inversion point, while at high mixture velocities the phase inversion point for nanoparticles and blend (nanoparticles/surfactant) systems was delayed (postponed) to a higher value of the dispers

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Optics And Applications
Modeling and Analysis of a Miniaturized Ring Modulator Using Silicon-Polymer-Metal Hybrid Plasmonic Phase Shifter. Part II: Performance Predictions
...Show More Authors

The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d

... Show More
View Publication
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Optics And Applications
Modeling and Analysis of a Miniaturized Ring Modulator Using Silicon-Polymer-Metal Hybrid Plasmonic Phase Shifter. Part I: Theoretical Framework
...Show More Authors

This paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology

View Publication
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
Performance evolution of a hybrid thermal solar air conditioning system and compare it with a traditional system according to Iraq weather
...Show More Authors

In a hybrid cooling solar thermal systems , a solar collector is used to convert solar energy into heat energy in order to super heat the refrigerant leaving the compressor, and this process helps in the transformation of refrigerant state from gaseous state to the liquid state in upper two-thirds of the condenser instead of the lower two-thirds such as in the traditional air-conditioning systems and this will reduce the energy needed to run the process of cooling .In this research two systems with a capacity of 2 tons each were used, a hybrid air-conditioning system with an evacuated tubes solar collector and a traditional air-conditioning system . The refrigerant of each type was R22.The comparison was in the amou

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Laser
PDF Mechanical Properties of AISI 316L Stainless Steel Produced Via Selective Laser Melting
...Show More Authors

Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us

... Show More
View Publication Preview PDF