Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were used to determine mechanical properties. The results indicated that the samples were completely dissolved, and the hardness was 285HV. Compared with the models produced by other parameters, the best 0.3% porosity was obtained using 100 W laser power, a hatching distance of 70 µm, a layer thickness of 30µm, and a scanning speed of 600 mm/sec. In addition, the volumetric energy density value for the best result was 79 J/mm3.
Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue
... Show MoreAbstract
Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC) on properties of composite coatings. I
... Show MoreThis paper has investigated experimentally the dynamic buckling behavior of AISI 303 stainless steel Aluminized and as received long columns. These columns, hot-dip aluminized and as received, are tested under dynamic buckling, 22 specimens, without aluminizing (type 1), and 50 specimens, with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), are tested under dynamic compression loading and under dynamic combined loading (compression and bending) by using a rotating buckling test machine. The experimental results are compared with Perry Robertson interaction formula that used for long columns. Greenhill formula is used to get a mathematical model that descripts the buckling behavior
... Show MoreIn this research is to study the influence of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel (MSS), where a number of specimens from martensitic stainless steel were subjected to solution treatment at 1100 oC for one hour followed by water quenching then aging in the temperatures range (500-750) oC for different holding times (1,5,10,15&20) hr. Accelerated chemical corrosion test and immersion chemical corrosion test were performed on samples after heat treatment. The results of the research showed that the pitting corrosion resistance is significantly affected by the aging temperature. Where found that the aging samples at a temperature of 500 °C have the highest ra
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThis research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.
The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreThis paper experimentally investigated the dynamic buckling behavior of AISI 303 stainless steel aluminized and as received intermediate columns. Twenty seven specimens without aluminizing (type 1) and 75 specimens with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), were tested under dynamic compression loading (compression and torsion), dynamic bending loading (bending and torsion), and under dynamic combined loading (compression, bending, and torsion) by using a rotating buckling test machine. The experimental results werecompared with tangent modulus theory, reduced modulus theory, and Perry Robertson interaction formula. Reduced modulus was formulated to circular cross-
... Show More