Biped robots have gained much attention for decades. A variety of researches has been conducted to make them able to assist or even substitute for humans in performing special tasks. In addition, studying biped robots is important in order to understand the human locomotion and to develop and improve control strategies for prosthetic and orthotic limbs. Some challenges encountered in the design of biped robots are: (1) biped robots have unstable structures due to the passive joint located at the unilateral foot-ground contact. (2) They have different configuration when switching from walking phase to another. During the singlesupport phase, the robot is under-actuated, while turning into an over-actuated system during the double-support phase. (3) Biped robots have many degrees of freedom (DOFs). (4) Biped robots interact with different unknown environments. Therefore, this work attempts to investigate and resolve different issues encountered in dynamics, walking pattern generators and control of biped robots; the details as follows: • Dynamics Two walking patterns have been modeled using two well-known formulations: Lagrangian and the modified recursive Newton-Euler (N-E) formulations. The first walking pattern moves with 6 DOFs during the single support phase (SSP) changing its configuration with 7 DOFs during the double support phase (DSP) (the stance foot will move directly during the DSP). Whereas the other walking pattern has 6 DOFs during all walking phases (the SSP and the two sub-phases of the DSP); the stance foot will be fixed during the first sub-phase of the DSP. These two walking pattern are different in configuration and number of phases during the DSP. To resolve the problem of over-actuation, a linear transition function is proposed to ensure smooth transition for the biped from the SSP to the DSP and vice versa. If we assume ideal dynamic response, this strategy can resolve the discontinuity in input control torque and ground reaction forces. • Walking pattern generators Two methods have been used to generate walking patterns of biped mechanism which are (1) optimal control theory and (2) center of gravity (COG)-based model. Computational optimal control has been performed to investigate the effects of some imposed constraints on biped locomotion, such as enforcing swing foot to move level to the ground, hip motion with constant height etc. finite difference approach has been used to transcribe infinite dimensional optimal control problem into finite dimensional suboptimal control problem. Then parameter optimization has been used to get suboptimal trajectory of the biped with the imposing different constraints. In general, any artificially imposed constraint to biped locomotion can lead to increase in value of input control torques. On the other hand, suboptimal trajectory of biped robot during complete gait cycle had been accomplished with different cases such that continuous dynamic response occurs. Enforcing the biped locomotion to move with linear transition of zero-moment point (ZMP) during the DSP can lead to more energy consumption. Using the simple COG-based model, a comparative study has been conducted to generate continuous motion for COG of the biped; all these methods depend on linear pendulum model. It has been shown all these methods are equivalent. On the other hand, the effect of foot configuration has been investigated. Foot rotation can improve biped configuration at heel strike by controlling foot angle. In addition, foot motion with impact can give some freedom and uniform biped configuration compared with motion without impact. To compensate for the deviation of ZMP trajectory due to approximate model of the COG, a novel strategy has been proposed to satisfy kinematic and dynamic constraints, as well as singularity condition. A stable motion has been obtained for the target walking patterns. • Low-level control Two control schemes have been proposed based on dynamics formulations which are conventional adaptive control based on local approximation technique and Lagrangian formulation, and virtual decomposition control (VDC) based on local approximation technique and recursive N-E formulation. In the first approach (conventional control), a new representation of dynamic matrices has been coined which is computationally efficient than other representation (sparse-base representation, Kronecker product etc.). Controller structures for the SSP and the DSP have been designed in details. Since adaptive control assumes no prior knowledge of estimated weighting matrices; therefore, zero input control torques could be result in at the beginning of each phase. Consequently, discontinuous dynamic response could result. The VDC is an efficient tool for complex robotic system such as biped robot. Therefore each subsystem (link, joint) has been controlled using adaptive approximation–based VDC. A novel optimization technique has been used to deal with continuous dynamic response; however, using zero initial weighting matrices for estimation dynamic matrices and vectors could result in zero input control at beginning of each walking phases.
This study was conducted to evaluate the efficacy of 6 isolates of Pseudomonas fluorescens and Trichoderma harzianum and there combination against Fusarium tomato wilt disease caused by Fusarium oxysporum F.sp. Lycopersisi under green house condition .The isolates of bacteria (B3) and Trichoderma (T1) were found to be highly effective in reducing the disease incidence to 13.3% , 21% respectively , compared to control treatment (40%).Furthermore, disease severity was reduced to 28 and 30% respectively in comparison to control (90%) .Colonization of the roots (cfu /g fresh root weight )by the two isolates whether alon or together was extremely high . The combination treatment had a high ability in reducing disease incidenece and sev
... Show MoreEntrepreneurial events are understood to be imperious in accelerating the economic development of nations owing to a large number of jobs it creates. Thus, both developed and developing countries understand the importance of entrepreneurship education to instil student interest in entrepreneurial action. This study investigates the moderating effect of entrepreneurship education (EEP) on the relationship between attitude (ATT), subjective norms (SNMS), and perceived behavioural control (PBC) towards entrepreneurship intention (EINT) of university undergraduate students. The study population covered 794 students from all the four faculties of Northwest University Kano, that were taught a compulsory entrepreneurship education course in their
... Show MoreReceive money laundering phenomenon of interest to researchers and scholars on different intellectual orientation of economic or political or other, as this process is gaining paramount importance in light of business and increase the number of banks in the province of Kurdistan of Iraq and Erbil in particular and in the presence of openness developments chaotic economic and there are no factors encourage money laundering operation because of the presence of the hidden economy and the weakness of the banking and legal measures to combat them, and on this basis there is a need to examine money laundering operation in the province of Arbil, to indicate the presence or absence of a money laundering operation in working in the provin
... Show MorePeriodontitis is a chronic inflammation affecting the tooth-supporting periodontal tissues. It is diagnosed by measuring periodontal parameters. However, documenting this data takes effort and may not discover early periodontitis. Biomarkers may help diagnose and assess periodontitis. This study aimed to evaluate the potential diagnostic of the salivary tumor necrosis factor-α (TNF-α) and receptor-activator of nuclear factor ĸ-B-ligand (RANKL) in distinguishing between periodontitis and healthy periodontium.
The
The goal of this study is to build an application that can be used in difficult cases and sudden circumstances during the pandemic and post-disaster state, which can be the development of digital risk management and mitigating the difficult impact of the epidemic through the improvement of IT and IoT that can be fine by finding initial solutions and make the world like a digital city that could be managed by the network. We provide this study to gain an overview of reasons for delayed and exceeded costs in a select of thirty Iraqi case projects by controlling the time and cost. The drivers of delay have been investigated in multiple countries/contexts. however, there is little country data available under the conditions that have ch
... Show MoreCNC machines are widely used in production fields since they produce similar parts in a minimum time, at higher speed and with possibly minimum error. A control system is designed, implemented and tested to control the operation of a laboratory CNC milling machine having three axes that are moved by using a stepper motor attached to each axis. The control system includes two parts, hardware part and software part, the hardware part used a PC (works as controller) connected to the CNC machine through its parallel port by using designed interface circuit. The software part includes the algorithms needed to control the CNC. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD or 3D MAX and is saved in a we
... Show MoreIn this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
In this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control
... Show MoreThere is no doubt that the project control function is very important for administration, so the project Management depends on to monitor and control the project. The project control integrated to the planning which is the base of the administration functions; planning, organizing, directing, and controlling. Without project control cannot be insure to fulfill the plan of the project by the budget and specified time. The project management apply many methods of control to achieve the goals of project which are cost, time, and required specifications. Earned Value Management one of control methods that used in the project by international companies.
Earned Value Method is used in the project o
... Show More