In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
The aim of this paper is to introduce the notion of hyper fuzzy AT-ideals on hyper AT-algebra. Also, hyper fuzzy AT-subalgebras and fuzzy hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras. Furthermore, the fuzzy set theory of the (weak, strong, s-weak) hyper fuzzy ATideals in hyper AT-algebras are applied and the relations among them are obtained.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
The aim of this paper is to introduce the definition of a general fuzzy norned space as a generalization of the notion fuzzy normed space after that some illustrative examples are given then basic properties of this space are investigated and proved.
For example when V and U are two general fuzzy normed spaces then the operator is a general fuzzy continuous at u V if and only if u in V implies S(u) in U.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
In this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.
In this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.
In this paper we discuss the Zariski topology of intuitionistic fuzzy d-filter in d-algebra, with some topological properties on the spectrum of intuitionistic fuzzy d-filter in d-algebra X which have algebraic features such as connectedness. We find that this topology is a strongly connected, and T0 space. We also define the invariant map on intuitionistic fuzzy prime d-filter with a homomorphism map.
Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.