The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of this paper is to suggest a new hybrid estimator obtained by an ad-hoc algorithm which relies on data driven strategy that overcomes outliers. While the minor goal is to introduce a new employment of an unweighted estimation method named "winsorization" which is a good method to get robustness in regression estimation via special technique to reduce the effect of the outliers. Another specific contribution in this paper is to suggest employing "Kernel" function as a new weight (in the scope of the researcher's knowledge).Moreover, two weighted estimations are based on robust weight functions named "Cauchy" and "Talworth". Simulations have been constructed with contamination levels (0%, 5%, and 10%) which associated with sample sizes (n=40,100). Real data application showed the superior performance of the suggested method compared with other methods using RMSE and R2 criteria.
This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
In the context of normed space, Banach's fixed point theorem for mapping is studied in this paper. This idea is generalized in Banach's classical fixed-point theory. Fixed point theory explains many situations where maps provide great answers through an amazing combination of mathematical analysis. Picard- Lendell's theorem, Picard's theorem, implicit function theorem, and other results are created by other mathematicians later using this fixed-point theorem. We have come up with ideas that Banach's theorem can be used to easily deduce many well-known fixed-point theorems. Extending the Banach contraction principle to include metric space with modular spaces has been included in some recent research, the aim of study proves some pro
... Show MoreMulti-point forming (MPF) is an advanced flexible manufacture technology, and the technology results from the idea that the whole die is separated into small punches that can be adjusted height. This idea is applied to the traditional rigid blank-holder, so flexible blank-holder (FBH) idea can be obtained. In this work, the performance of a multi-point die is investigated with pins in square matrix and suitable blank holder. Each pin in the punch holder can be a significant moved according to the die high and at different load that applied with spring with respect to spring stiffness. The results shows the reduction in setting time with respect to traditional single point incremental forming process that lead to (90%). and also show duri
... Show MoreThe experiment was carried out at the Field Crops Research Station, College of Agricultural Engineering Sciences - University of Baghdad in Jadiriyah, with the aim of evaluating the performance of partial diallel hybrids and inbred lines of maize and estimating general combining ability(GCA), specific combining ability (SCA) and some genetic parameters. The experiment was carried out in two seasons, spring and fall 2020. Eight inbred lines of maize were used in the study (BI9/834, BSW18, LW/5 L8/844, ZA17W194, Z117W, ZI17W9, ZI7W4), numbered (1,2,3,4,5,6,7,8), It was sowed in the spring season and entered into a cross-program according to a partial diallel crossing system to obtain tw
The ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
Background: Blood group system and the ability to taste phenylthiocarbamide (PTC) are the most studied traits in human genetics which have been extensively used in describing genetic variations among human populations around the world that may had an effect on dental caries. The aims of present study were to investigate the caries experience among students with different bitter taste threshold in relation to blood type. Materials and Methods: The sample of present study includes dental students female aged19-21 years. The diagnosis of dental caries was done according to the criteria of Manjia et al, 1989 recording decayed lesion by severity (D1-4) MFS. Furthermore, bitter taste sensitivity was measured according to PTC (phenylthiocarbamid
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
Abstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show More